209 research outputs found

    Methyl Bromide In Preindustrial Air: Measurements From an Antarctic Ice Core

    Get PDF
    This paper presents the first ice core measurements of methyl bromide (CH3Br). Samples from a shallow Antarctic ice core (Siple Dome, West Antarctica), ranging in mean gas dates from 1671 to 1942, had a mean CH3Br mixing ratio of 5.8 ppt. These results extend the existing historical record derived from air and Antarctic firn air to about 350 years before present. Model simulations illustrate that the ice core results are consistent with estimates of the impact of anthropogenic activity ( fumigation, combustion, and biomass burning) on the atmospheric CH3Br burden, given the large current uncertainties in the modern atmospheric CH3Br budget. A preindustrial scenario assuming no fumigation, no combustion, and a 75% reduction in biomass-burning sources yields aSouthern Hemisphere mean mixing ratio of 5.8 ppt, in good agreement with the ice core results. There is a significant imbalance between the known CH3Br sources and sinks in the modern atmospheric CH3Br budget. The ice core data do not sufficiently constrain the model to determine how much of the unknown source\u27\u27 was present in the preindustrial budget. The results do indicate that most of the southern hemispheric component of this unknown source\u27\u27 is not anthropogenic

    Domain decomposition for implicit solvation models

    Get PDF
    International audienceThis article is the first of a series of papers dealing with domain decomposition algorithms for implicit solvent models. We show that, in the framework of the COSMO model, with van der Waals molecular cavities and classical charge distributions, the electrostatic energy contribution to the solvation energy, usually computed by solving an integral equation on the whole surface of the molecular cavity, can be computed more efficiently by using an integral equation formulation of Schwarz's domain decomposition method for boundary value problems. In addition, the so-obtained potential energy surface is smooth, which is a critical property to perform geometry optimization and molecular dynamics simulations. The purpose of this first article is to detail the methodology, set up the theoretical foundations of the approach, and study the accuracies and convergence rates of the resulting algorithms. The full efficiency of the method and its applicability to large molecular systems of biological interest is demonstrated elsewhere

    Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias.

    Get PDF
    PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of \u3c1 x\u3e10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects

    Diffusivity of methyl bromide in water

    Full text link
    The oceans are important in the geochemical cycle of methyl bromide, as both a source of natural methyl bromide and a sink for anthropogenic methyl bromide. Air-sea exchange rate calculations are based on measured concentration differences across the air-sea surface, on various gas exchange wind speed relationships, and on the diffusivity of methyl bromide in seawater. In this study, the diffusivity of methyl bromide in pure water has been experimentally determined over the temperature range 5-20°C. The diffusivity varied from 9.85 x 10-6 cm2 s-1 at 5°C to 1.50 x 10-5 cm2 s-1 at 19.4°C. The values obtained in this study are ~ 8-35% higher than those derived from semi-empirical estimates. The diffusivity of methyl bromide in 3.5% NaCl solution was also measured at 13°C and found to be the same as the diffusivity measured in pure water. This is a surprising result given the viscosity differences between these two media. Schmidt numbers (Sc) for seawater have been calculated as a function of temperature from the pure water diffusivities. Schmidt numbers varied from 1585 at 5°C to 700 at 20°C

    Atmospheric hydrogen sulfide over the equatorial Pacific (SAGA 3)

    Full text link
    Atmospheric H2S concentrations were measured over the equatorial Pacific on leg 1 of the third Soviet-American Gases and Aerosols (SAGA 3) cruise during February and March 1990. Five N-S transects were made across the equator between Hawaii and American Samoa. The concentrations ranged from below the detection limit of 0.4 ± 0.5 (1 σ) to 14.4 ppt with an average value of 3.6 ± 2.3 ppt (1σ, n= 72). The highest concentrations were found on the easternmost two transects just south of the equator. The average concentration of 3.6 ppt observed on this cruise is the lowest reported value for background atmospheric H2S over the tropical oceans. A lack of correlation between 222Rn and H2S rules out a significant continental source. Model calculations indicate that the oceanic source of H2S in this region is in the range of 9 to 21 × 10−8 mol m−2 d−1. From this flux the concentration of free sulfide (H2S + S= ) in the surface mixed layer of the ocean is estimated to be in the range of 32 to 67 pmol L−1. In the atmosphere the oxidation of H2S produces SO2 at a rate of 2.1 to 4.4 × 10−11 mol m−3 d−1 which is only a small fraction of that estimated from the oxidation of dimethyl sulfide (DMS) in this region. A diurnal cycle was not observed in the H2S data recorded during this cruise

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore