1,990 research outputs found

    Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups

    Get PDF
    We prove that groups in a certain class of metabelian locally compact groups, have quadratic Dehn function. As an application, we embed the solvable Baumslag-Solitar groups into finitely presented metabelian groups with quadratic Dehn function. Also, we prove that Baumslag's finitely presented metabelian groups, in which the lamplighter groups embed, have quadratic Dehn function.Comment: 13 pages, one figure. v1->v2: title has been changed; added application to Baumslag's group v2->v3 numerous correction

    Quasi-friendly sup-interpretations

    Get PDF
    In a previous paper, the sup-interpretation method was proposed as a new tool to control memory resources of first order functional programs with pattern matching by static analysis. Basically, a sup-interpretation provides an upper bound on the size of function outputs. In this former work, a criterion, which can be applied to terminating as well as non-terminating programs, was developed in order to bound polynomially the stack frame size. In this paper, we suggest a new criterion which captures more algorithms computing values polynomially bounded in the size of the inputs. Since this work is related to quasi-interpretations, we compare the two notions obtaining two main features. The first one is that, given a program, we have heuristics for finding a sup-interpretation when we consider polynomials of bounded degree. The other one consists in the characterizations of the set of function computable in polynomial time and in polynomial space

    Resource control of object-oriented programs

    Get PDF
    A sup-interpretation is a tool which provides an upper bound on the size of a value computed by some symbol of a program. Sup-interpretations have shown their interest to deal with the complexity of first order functional programs. For instance, they allow to characterize all the functions bitwise computable in Alogtime. This paper is an attempt to adapt the framework of sup-interpretations to a fragment of oriented-object programs, including distinct encodings of numbers through the use of constructor symbols, loop and while constructs and non recursive methods with side effects. We give a criterion, called brotherly criterion, which ensures that each brotherly program computes objects whose size is polynomially bounded by the inputs sizes

    Complexity Information Flow in a Multi-threaded Imperative Language

    Get PDF
    We propose a type system to analyze the time consumed by multi-threaded imperative programs with a shared global memory, which delineates a class of safe multi-threaded programs. We demonstrate that a safe multi-threaded program runs in polynomial time if (i) it is strongly terminating wrt a non-deterministic scheduling policy or (ii) it terminates wrt a deterministic and quiet scheduling policy. As a consequence, we also characterize the set of polynomial time functions. The type system presented is based on the fundamental notion of data tiering, which is central in implicit computational complexity. It regulates the information flow in a computation. This aspect is interesting in that the type system bears a resemblance to typed based information flow analysis and notions of non-interference. As far as we know, this is the first characterization by a type system of polynomial time multi-threaded programs

    Classification and Anomaly Detection for Astronomical Datasets

    No full text
    This work develops two new statistical techniques for astronomical problems: a star / galaxy separator for the UKIRT Infrared Deep Sky Survey (UKIDSS) and a novel anomaly detection method for cross-matched astronomical datasets. The star / galaxy separator is a statistical classification method which outputs class membership probabilities rather than class labels and allows the use of prior knowledge about the source populations. Deep Sloan Digital Sky Survey (SDSS) data from the multiply imaged Stripe 82 region is used to check the results from our classifier, which compares favourably with the UKIDSS pipeline classification algorithm. The anomaly detection method addresses the problem posed by objects having different sets of recorded variables in cross-matched datasets. This prevents the use of methods unable to handle missing values and makes direct comparison between objects difficult. For each source, our method computes anomaly scores in subspaces of the observed feature space and combines them to an overall anomaly score. The proposed technique is very general and can easily be used in applications other than astronomy. The properties and performance of our method are investigated using both real and simulated datasets

    Isometric group actions on Hilbert spaces: growth of cocycles

    Full text link
    We study growth of 1-cocycles of locally compact groups, with values in unitary representations. Discussing the existence of 1-cocycles with linear growth, we obtain the following alternative for a class of amenable groups G containing polycyclic groups and connected amenable Lie groups: either G has no quasi-isometric embedding into Hilbert space, or G admits a proper cocompact action on some Euclidean space. On the other hand, noting that almost coboundaries (i.e. 1-cocycles approximable by bounded 1-cocycles) have sublinear growth, we discuss the converse, which turns out to hold for amenable groups with "controlled" Folner sequences; for general amenable groups we prove the weaker result that 1-cocycles with sufficiently small growth are almost coboundaries. Besides, we show that there exist, on a-T-menable groups, proper cocycles with arbitrary small growth.Comment: 26 pages, no figure. To appear in Geom. Funct. Ana

    The Howe-Moore property for real and p-adic groups

    Full text link
    We consider in this paper a relative version of the Howe-Moore Property, about vanishing at infinity of coefficients of unitary representations. We characterize this property in terms of ergodic measure-preserving actions. We also characterize, for linear Lie groups or p-adic Lie groups, the pairs with the relative Howe-Moore Property with respect to a closed, normal subgroup. This involves, in one direction, structural results on locally compact groups all of whose proper closed characteristic subgroups are compact, and, in the other direction, some results about the vanishing at infinity of oscillatory integrals.Comment: 25 pages, no figur

    Amenable hyperbolic groups

    Full text link
    We give a complete characterization of the locally compact groups that are non-elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semi-regular trees acting doubly transitively on the set of ends. As an application, we show that the class of hyperbolic locally compact groups with a cusp-uniform non-uniform lattice, is very restricted.Comment: 41 pages, no figure. v2: revised version (minor changes

    Isometric group actions on Hilbert spaces: structure of orbits

    Full text link
    Our main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.Comment: 12 pages, to appear in Canadian Math.
    • …
    corecore