114 research outputs found

    An introduction to neighborhood sustainability assessment tool (NSAT) study for China from comprehensive analysis of eight Asian tools

    Get PDF
    In comparison to city-level and building-level sustainability research, neighborhood-level sustainable urban development is less studied. One of the ways of achieving sustainability at this level is the use of the Neighborhood Sustainability Assessment Tool (NSAT), which focuses on the sustainable urban development of districts, communities, and neighborhoods. NSAT is comprised of urban sustainable indicators and associated points ascribed towards achieving specific urban agendas, called headline sustainability indicators (HSIs) and themes. In China, neighborhood-level sustainability agenda has just been recently established in 2017. Hence, there is an immediate need for NSAT development of multiple cities responding to specific regions of different climate zones in China. As an example, this study utilizes the case of Ningbo City, located in east China, for such NSAT development. This paper provides a comprehensive analytical and comparison study of eight Asian NSATs to highlight compatibilities and extract specific indicators for a new NSAT development for China. The results from this comparative and analytical study, developed through a multidimensional approach of sustainable pathway model (SPM) inform a new NSAT development in a new context. This novel contribution is significant in a context where neighborhood sustainability measures are recently developed. This study serves as the starting point for future research of NSATs in China and other countries

    Towards Efficient Communications in Federated Learning: A Contemporary Survey

    Full text link
    In the traditional distributed machine learning scenario, the user's private data is transmitted between nodes and a central server, which results in great potential privacy risks. In order to balance the issues of data privacy and joint training of models, federated learning (FL) is proposed as a special distributed machine learning with a privacy protection mechanism, which can realize multi-party collaborative computing without revealing the original data. However, in practice, FL faces many challenging communication problems. This review aims to clarify the relationship between these communication problems, and focus on systematically analyzing the research progress of FL communication work from three perspectives: communication efficiency, communication environment, and communication resource allocation. Firstly, we sort out the current challenges existing in the communications of FL. Secondly, we have compiled articles related to FL communications, and then describe the development trend of the entire field guided by the logical relationship between them. Finally, we point out the future research directions for communications in FL

    Rapid screening mutations of first-line-drug-resistant genes in Mycobacterium tuberculosis strains by allele-specific real-time quantitative PCR

    Get PDF
    Tuberculosis (TB) is a worldwide health, economic, and social burden, especially in developing countries. Drug-resistant TB is the most serious type of this burden. Thus, it is necessary to screen drug-resistant mutations by using a simple and rapid detection method. A total of 32 pairs of allele-specific PCR (AS-PCR) primers were designed to screen mutation and/or wild-type alleles of 16 variations in four first-line drug-resistant genes (katG, rpoB, rpsL, and embB) of TB strains. A pair of primers was designed to amplify 16S rRNA gene and to verify successful amplification. Subsequently, we tested the specificity and sensitivity of these AS-PCR primers. The optimized condition of these AS-PCR primers was first confirmed. All mutations could be screened in general AS-PCR, but only 13 of 16 variations were intuitively investigated by using real-time quantitative PCR (qPCR) and AS-PCR primers. The results of specificity assay suggested that the AS-PCR primers with mutation and/or wildtype alleles could successfully amplify the corresponding allele under optimized PCR conditions. The sensitivity of nine pairs of primers was 500 copy numbers, and the other seven pairs of primers could successfully amplify correct fragments with a template comprising 103 or 104 copy numbers template. An optimized AS-qPCR was established to screen drug-resistant mutations in TB strains with high specificity and sensitivity

    Analyzing resistome in soil and Human gut: a study on the characterization and risk evaluation of antimicrobial peptide resistance

    Get PDF
    ObjectiveThe limited existing knowledge regarding resistance to antimicrobial peptides (AMPs) is hindering their broad utilization. The aim of this study is to enhance the understanding of AMP resistance, a pivotal factor in the exploration of alternative drug development in response to the escalating challenge of antibiotic resistance.MethodsWe utilized metagenomic functional selection to analyze genes resistant to AMPs, with a specific focus on the microbiota in soil and the human gut. Through a combination of experimental methods and bioinformatics analyses, our investigation delved into the possibilities of the evolution of resistance to AMPs, as well as the transfer or interchange of resistance genes among the environment, the human body, and pathogens. Additionally, we examined the cross-resistance between AMPs and evaluated interactions among AMPs and conventional antibiotics.ResultsThe presence of AMP resistance, including various resistance mechanisms, was observed in both soil and the human gut microbiota, as indicated by our findings. Significantly, the study underscored the facile evolution of AMP resistance and the potential for gene sharing or exchange among different environments. Notably, cross-resistance among AMPs was identified as a phenomenon, while cross-resistance between AMPs and antibiotics was found to be relatively infrequent.ConclusionThe results of our study highlight the significance of taking a cautious stance when considering the extensive application of AMPs. It is imperative to thoroughly assess potential resistance risks, with a particular focus on the development of resistance to AMPs across diverse domains. A comprehensive grasp of these aspects is essential for making well-informed decisions and ensuring the responsible utilization of AMPs in the ongoing fight against antibiotic resistance

    Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition

    Get PDF
    AbstractNegative thermal expansion (NTE) is an intriguing property, which is generally triggered by a single NTE mechanism. In this work, an enhanced NTE (αv = −32.9 × 10−6 K−1, ΔT = 175 K) is achieved in YbMn2Ge2 intermetallic compound to be caused by a dual effect of magnetism and valence transition. In YbMn2Ge2, the Mn sublattice that forms the antiferromagnetic structure induces the magnetovolume effect, which contributes to the NTE below the Néel temperature (525 K). Concomitantly, the valence state of Yb increases from 2.40 to 2.82 in the temperature range of 300–700 K, which simultaneously causes the contraction of the unit cell volume due to smaller volume of Yb3+ than that of Yb2+. As a result, such combined effect gives rise to an enhanced NTE. The present study not only sheds light on the peculiar NTE mechanism of YbMn2Ge2, but also indicates the dual effect as a possible promising method to produce enhanced NTE materials

    Fe-assisted epitaxial growth of 4-inch single-crystal transition-metal dichalcogenides on c-plane sapphire without miscut angle

    Full text link
    Epitaxial growth and controllable doping of wafer-scale single-crystal transition-metal dichalcogenides (TMDCs) are two central tasks for extending Moore's law beyond silicon. However, despite considerable efforts, addressing such crucial issues simultaneously under two-dimensional (2D) confinement is yet to be realized. Here we design an ingenious epitaxial strategy to synthesize record-breaking 4-inch single-crystal Fe-doped TMDCs monolayers on industry-compatible c-plane sapphire without miscut angle. In-depth characterizations and theoretical calculations reveal that the introduction of Fe significantly decreases the formation energy of parallel steps on sapphire surfaces and contributes to the edge-nucleation of unidirectional TMDCs domains (>99%). The ultrahigh electron mobility (~86 cm2 V -1 s-1) and remarkable on/off current ratio (~108) are discovered on 4-inch single-crystal Fe-MoS2 monolayers due to the ultralow contact resistance and perfect Ohmic contact with metal electrodes. This work represents a substantial leap in terms of bridging the synthesis and doping of wafer-scale single-crystal 2D semiconductors without the need for substrate miscut, which should promote the further device downscaling and extension of Moore's law.Comment: 17 pages, 5 figure

    Identifying differentially expressed genes in goat mammary epithelial cells induced by overexpression of SOCS3 gene using RNA sequencing

    Get PDF
    The suppressor of cytokine signaling 3 (SOCS3) is a key signaling molecule that regulates milk synthesis in dairy livestock. However, the molecular mechanism by which SOCS3 regulates lipid synthesis in goat milk remains unclear. This study aimed to screen for key downstream genes associated with lipid synthesis regulated by SOCS3 in goat mammary epithelial cells (GMECs) using RNA sequencing (RNA-seq). Goat SOCS3 overexpression vector (PC-SOCS3) and negative control (PCDNA3.1) were transfected into GMECs. Total RNA from cells after SOCS3 overexpression was used for RNA-seq, followed by differentially expressed gene (DEG) analysis, functional enrichment analysis, and network prediction. SOCS3 overexpression significantly inhibited the synthesis of triacylglycerol, total cholesterol, non-esterified fatty acids, and accumulated lipid droplets. In total, 430 DEGs were identified, including 226 downregulated and 204 upregulated genes, following SOCS3 overexpression. Functional annotation revealed that the DEGs were mainly associated with lipid metabolism, cell proliferation, and apoptosis. We found that the lipid synthesis-related genes, STAT2 and FOXO6, were downregulated. In addition, the proliferation-related genes BCL2, MMP11, and MMP13 were upregulated, and the apoptosis-related gene CD40 was downregulated. In conclusion, six DEGs were identified as key regulators of milk lipid synthesis following SOCS3 overexpression in GMECs. Our results provide new candidate genes and insights into the molecular mechanisms involved in milk lipid synthesis regulated by SOCS3 in goats
    • …
    corecore