202 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Research on Product Platform Innovation and Evolution Based on Lifecycle

    No full text
    Conference Name:10th International Conference on Machining and Advanced Manufacturing Technology. Conference Address: Jinan, PEOPLES R CHINA. Time:NOV 07-09, 2009.To enhance the ability of product platform innovation and upgrading under Mass Customization (MC) environment, the concept of Product Platform Life Cycle (PPLC) was put forward. The innovation and evolving process and the characters of PPLC were analyzed. The Stability of the platform and its disturbance factors were discussed. A model which describes the process of product platform innovation and evolution was proposed Then disturbance factors affecting product platform stability and platform innovation process were discussed

    Selective Leaching of Inert Mineral Product and the RO Phase in Steel Slag with Acetum to Improve Total Fe Content

    No full text
    The chemical and mineral components of the leaching residues obtained during the leaching of inert mineral product (IMP) and two samples of divalent metal oxide continuous solid solution (RO phase) by acetum at 20 °C were analyzed to reveal the selective leaching characteristics of the chemical and mineral components in steel slag, and clarify the leaching rates and differences of MgO and FeO in the RO phase. The results indicated that the content of total Fe (TFe) in the leaching residue increased, whereas the contents of CaO, SiO2, and MgO decreased during the leaching of the inert mineral product by acetum. Fe3O4 was insoluble in acetum. The leaching rates of the RO phase and metallic Fe were very low, while those of calcium silicate (C2S + C3S) and dicalcium ferrite (C2F) were quite high. MgO and FeO in the RO phase continuously leached over time, and the leaching rate of MgO reached 1.9 times that of FeO. Therefore, during the leaching of the RO phase by acetum, the FeO content increased, whereas the MgO content decreased. In conclusion, acetum leaching can effectively improve the TFe content of the RO phase and the inert mineral product

    Yttrium oxide as a Q-switcher for the near-infrared erbium-doped fiber laser

    No full text
    Yttrium oxide (Y2O3) has been widely used in metal-reinforced composites, microelectronics, waveguide lasers, and high-temperature protective coatings because of its good physical and photoelectric properties. However, few studies have been done on the nonlinear optical applications of Y2O3 as saturable absorbers (SAs) in fiber lasers so far. Here, a passively Q-switched near-infrared fiber laser using Y2O3 as a Q-switching device is demonstrated. The optical nonlinear properties of the Y2O3 SA prepared by the magnetron sputtering method were measured by the twin-detector measurement technique, and the modulation depth of the proposed Y2O3 SA was found to be 46.43%. The achieved Q-switched laser delivers an average output power of 26 mW at 1530 nm with a pulse duration of 592.7 ns. To the best of our knowledge, this is the first report on the optical nonlinearity of Y2O3 as a Q-switcher for the near-infrared fiber laser, which may deepen the understanding of the optical nonlinear properties of Y2O3 and make inroads into the potential market of optical modulation and optoelectronic devices

    Increased Cerebral Level of P2X7R in a Tauopathy Mouse Model by PET Using [18F]GSK1482160.

    Get PDF
    Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5Ă—FAD, and 3Ă—Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5Ă—FAD mice, or 3Ă—Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice

    Table2_Establishing a glutamine metabolism-based model for predicting the prognosis of low-grade glioma.xlsx

    No full text
    Background: The natural history of patients with low-grade glioma (LGG) varies widely, but most patients eventually deteriorate, leading to poor prognostic outcomes. We aim to develop biological models that can accurately predict the outcome of LGG prognosis.Methods: Prognostic genes for glutamine metabolism were searched by univariate Cox regression, and molecular typing was constructed. Functional enrichment analysis was done to evaluate potential prognostic-related pathways by analyzing differential genes in different subtypes. Enrichment scores of specific gene sets in different subtypes were measured by gene set enrichment analysis. Different immune infiltration levels among subtypes were calculated using algorithms such as CIBERSORT and ESTIMATE. Gene expression levels of prognostic-related gene signatures of glutamine metabolism phenotypes were used to construct a RiskScore model. Receiver operating characteristic curve, decision curve and calibration curve analyses were used to evaluate the reliability and validity of the risk model. The decision tree model was used to determine the best predictor variable ultimately.Results: We found that C1 had the worst prognosis and the highest level of immune infiltration, among which the highest macrophage infiltration can be found in the M2 stage. Moreover, most of the pathways associated with tumor development, such as MYC_TARGETS_V1 and EPITHELIAL_MESENCHYMAL_TRANSITION, were significantly enriched in C1. The wild-type IDH and MGMT hypermethylation were the most abundant in C1. A five-gene risk model related to glutamine metabolism phenotype was established with good performance in both training and validation datasets. The final decision tree demonstrated the RiskScore model as the most significant predictor of prognostic outcomes in individuals with LGG.Conclusion: The RiskScore model related to glutamine metabolism can be an exceedingly accurate predictor for LGG patients, providing valuable suggestions for personalized treatment.</p

    Table1_Establishing a glutamine metabolism-based model for predicting the prognosis of low-grade glioma.xlsx

    No full text
    Background: The natural history of patients with low-grade glioma (LGG) varies widely, but most patients eventually deteriorate, leading to poor prognostic outcomes. We aim to develop biological models that can accurately predict the outcome of LGG prognosis.Methods: Prognostic genes for glutamine metabolism were searched by univariate Cox regression, and molecular typing was constructed. Functional enrichment analysis was done to evaluate potential prognostic-related pathways by analyzing differential genes in different subtypes. Enrichment scores of specific gene sets in different subtypes were measured by gene set enrichment analysis. Different immune infiltration levels among subtypes were calculated using algorithms such as CIBERSORT and ESTIMATE. Gene expression levels of prognostic-related gene signatures of glutamine metabolism phenotypes were used to construct a RiskScore model. Receiver operating characteristic curve, decision curve and calibration curve analyses were used to evaluate the reliability and validity of the risk model. The decision tree model was used to determine the best predictor variable ultimately.Results: We found that C1 had the worst prognosis and the highest level of immune infiltration, among which the highest macrophage infiltration can be found in the M2 stage. Moreover, most of the pathways associated with tumor development, such as MYC_TARGETS_V1 and EPITHELIAL_MESENCHYMAL_TRANSITION, were significantly enriched in C1. The wild-type IDH and MGMT hypermethylation were the most abundant in C1. A five-gene risk model related to glutamine metabolism phenotype was established with good performance in both training and validation datasets. The final decision tree demonstrated the RiskScore model as the most significant predictor of prognostic outcomes in individuals with LGG.Conclusion: The RiskScore model related to glutamine metabolism can be an exceedingly accurate predictor for LGG patients, providing valuable suggestions for personalized treatment.</p

    Diffuse Large B-cell Lymphoma of the Cerebellopontine Angle in a Patient with Sudden Hearing Loss and Facial Palsy

    Get PDF
    Primary lymphoma of the cerebellopontine angle (CPA) is rare in the central nervous system. To our knowledge, there have only been 14 cases reported worldwide so far. Here, we report our findings in a 57-year-old man, who presented with bilateral sudden hearing loss followed by left facial palsy within 1 month. Radiologic study and magnetic resonance imaging showed a homogeneous enhancing mass, 1.6 Ă— 0.5 Ă— 1.1 cm in size, in the left CPA cistern region with mild extension to the left internal auditory canal. The tumor was removed through left retromastoid craniectomy, and the histopathologic diagnosis of the tumor was confirmed as diffuse large B-cell type malignant lymphoma. After a series of tumor surveys, there was no evidence of other original lymphoma. The patient was treated with chemotherapy (including intra-Ommaya injection with methotrexate and Ara-C and systemic injection with vincristine, methotrexate and ifosfamide) for the primary CPA lymphoma. He was still alive 19 months after the initial treatment

    Redressing the interactions between stem cells and immune system in tissue regeneration

    No full text
    Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19
    • …
    corecore