418 research outputs found

    Choice of sewage sludge thermochemical disposal methods from multi‐ perspective analysis

    Get PDF
    Thermochemical conversion disposal methods for sewage sludge usually include incineration, gasification and pyrolysis. Incineration technology is relatively mature and the incineration ash can be potentially used for phosphorus (P) recovery. Gasification can be used to recover syngas which is convenient to be used for power & heat generation. While through pyrolysis, syngas of high quality, tar and char can be recovered. To make a proper choice from them, these techniques are compared from perspective of technology maturity, investment, operation cost, environmental impact and acceptability of the public. Technology maturity is evaluated by comparing industrial applications. Investment and operation cost are evaluated based on practical operation experiences; environmental impacts are evaluated based on life cycle assessment; and acceptability of the public is based on a questionnaire survey. Based on a scenario with capacity of 100 t/d in eastern China, investment are comparable for the three technologies within the range of 250,000-400,000 RMB yuan/(ton.d) with gasification close to the higher side; the operation cost varies in the range of 140 - 400 RMB yuan/ton with incineration the highest; pyrolysis corresponds to the lowest environmental impacts and the highest acceptability of the public, however the pyrolysis technology is not fully developed, especially the durable pyrolysis reactor and the application of pyrolysis char

    "En Face" detection of nitric oxide and superoxide in endothelial layer of intact arteries

    Get PDF
    Endothelium-derived nitric oxide (NO) produced from endothelial NO-synthase (eNOS) is one of the most important vasoprotective molecules in cardiovascular physiology. Dysfunctional eNOS such as uncoupling of eNOS leads to decrease in NO bioavailability and increase in superoxide anion (O₂.−) production, and in turn promotes cardiovascular diseases. Therefore, appropriate measurement of NO and O₂.− levels in the endothelial cells are pivotal for research on cardiovascular diseases and complications. Because of the extremely labile nature of NO and O₂.−, it is difficult to measure NO and O₂.− directly in a blood vessel. Numerous methods have been developed to measure NO and O₂.− production. It is, however, either insensitive, or non-specific, or technically demanding and requires special equipment. Here we describe an adaption of the fluorescence dye method for en face simultaneous detection and visualization of intracellular NO and O₂.− using the cell permeable diaminofluorescein-2 diacetate (DAF-2DA) and dihydroethidium (DHE), respectively, in intact aortas of an obesity mouse model induced by high-fat-diet feeding. We could demonstrate decreased intracellular NO and enhanced O₂.− levels in the freshly isolated intact aortas of obesity mouse as compared to the control lean mouse. We demonstrate that this method is an easy technique for direct detection and visualization of NO and O₂.− in the intact blood vessels and can be widely applied for investigation of endothelial (dys)function under (physio)pathological conditions

    Arginase-ii deficiency extends lifespan in mice

    Get PDF
    The mitochondrial arginase type II (Arg-II) has been shown to interact with ribosomal protein S6 kinase 1 (S6K1) and mitochondrial p66Shc and to promote cell senescence, apoptosis and inflammation under pathological conditions. However, the impact of Arg-II on organismal lifespan is not known. In this study, we demonstrate a significant lifespan extension in mice with Arg-II gene deficiency (Arg-II-/-) as compared to wild type (WT) control animals. This effect is more pronounced in the females than in the males. The gender difference is associated with higher Arg-II expression levels in the females than in the males in skin and heart at both young and old age. Ablation of Arg-II gene significantly reduces the aging marker p16INK4a levels in these tissues of old female mice, whereas in the male mice this effect of Arg- II deficiency is weaker. In line with this observation, age-associated increases in S6K1 signaling and p66Shc levels in heart are significantly attenuated in the female Arg-II-/- mice. In the male mice, only p66Shc but not S6K1 signaling is reduced. In summary, our study demonstrates that Arg-II may play an important role in the acceleration of aging in mice. Genetic disruption of Arg-II in mouse extends lifespan predominantly in females, which relates to inhibition of S6K1, p66Shc, and p16INK4a. Thus, Arg-II may represent a promising target to decelerate aging process and extend lifespan as well as to treat age-related diseases

    Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis

    Get PDF
    Type-II L-arginine:ureahydrolase, arginase-II (Arg-II), is shown to activate mechanistic target of rapamycin complex 1 (mTORC1) pathway and contributes to cell senescence and apoptosis. In an attempt to elucidate the underlying mechanism, we identified myosin-1b (Myo1b) as a mediator. Overexpression of Arg-II induces re-distribution of lysosome and mTOR but not of tuberous sclerosis complex (TSC) from perinuclear area to cell periphery, dissociation of TSC from lysosome and activation of mTORC1- ribosomal protein S6 kinase 1 (S6K1) pathway. Silencing Myo1b prevents all these alterations induced by Arg-II. By overexpressing Myo1b or its mutant with point mutation in its pleckstrin homology (PH) domain we further demonstrate that this effect of Myo1b is dependent on its PH domain that is required for Myo1b-lysosome association. Notably, Arg-II promotes association of Myo1b with lysosomes. In addition, we show that in senescent vascular smooth muscle cells with elevated endogenous Arg-II, silencing Myo1b prevents Arg-II-mediated lysosomal positioning, dissociation of TSC from lysosome, mTORC1 activation and cell apoptosis. Taken together, our study demonstrates that Myo1b mediates the effect of Arg-II in activating mTORC1-S6K1 through promoting peripheral lysosomal positioning, that results in spatial separation and thus dissociation of TSC from lysosome, leading to hyperactive mTORC1-S6K1 signaling linking to cellular senescence/apoptosis

    Residual Degradation Learning Unfolding Framework with Mixing Priors across Spectral and Spatial for Compressive Spectral Imaging

    Full text link
    To acquire a snapshot spectral image, coded aperture snapshot spectral imaging (CASSI) is proposed. A core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement. By alternately solving a data subproblem and a prior subproblem, deep unfolding methods achieve good performance. However, in the data subproblem, the used sensing matrix is ill-suited for the real degradation process due to the device errors caused by phase aberration, distortion; in the prior subproblem, it is important to design a suitable model to jointly exploit both spatial and spectral priors. In this paper, we propose a Residual Degradation Learning Unfolding Framework (RDLUF), which bridges the gap between the sensing matrix and the degradation process. Moreover, a MixS2S^2 Transformer is designed via mixing priors across spectral and spatial to strengthen the spectral-spatial representation capability. Finally, plugging the MixS2S^2 Transformer into the RDLUF leads to an end-to-end trainable neural network RDLUF-MixS2S^2. Experimental results establish the superior performance of the proposed method over existing ones.Comment: 10 pages, 5 figure

    Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery

    Full text link
    When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can importantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize data. However, these methods do not consider automatic exposure and tone mapping in image signal processing pipeline (ISP), leading to the limited generalization capability of deep models training using such data. Besides, existing methods struggle to handle multiple light sources due to the different sizes, shapes and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP and remodeling the principle of automatic exposure in the synthesis pipeline and design a more reliable light sources recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through convex combination, avoiding global illumination shifting and local over-saturation. Our strategy for recovering multiple light sources convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by ten types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations.Comment: ICCV 202
    corecore