103 research outputs found

    Wind Load of Low-Rise Building Based on Fluent Equilibrium Atmospheric Boundary Layer

    Get PDF
    The accurate simulation of the self-sustaining equilibrium atmospheric boundary layer is essential in computational wind engineering. In order to solve the problem of poor self-sustaining equilibrium atmospheric boundary layer, the method of adding source terms to the transport equation of the turbulence model was adopted to make the inlet profiles of average wind and turbulence wind consistent with the turbulence model. The consistency of the average wind profiles, turbulent characteristics of the three models at several different positions with and without considering the source terms were investigated respectively according to the corresponding CFD numerical example. Take the TTU low-rise building as an example, the proposed method of numerical simulations of the wind load on the structure surface. The results show that by adding source terms to the transport equations of the SST k-ω turbulence model can better achieve the self-sustaining of the atmospheric boundary layer. The velocity profiles and turbulence characteristics profiles of TTU low-rise building at the entrance and exit have high consistency when adding the source terms. The numerical simulation results of the wind pressure coefficient on the surface of the structure are in good agreement with the wind tunnel tests and field measurement results. It is shown that the method can effectively improve the accuracy simulation of the self-sustaining equilibrium of atmospheric boundary layer. The study conclusion proposes a new idea or research method for modeling the equilibrium atmosphere boundary layer and also provides further CFD simulations in structural wind engineering with theoretical and actual values

    Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight

    Get PDF
    FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development

    Genome-wide identification of U-box gene family and expression analysis in response to saline-alkali stress in foxtail millet (Setaria italica L. Beauv)

    Get PDF
    E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I–VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes

    Vascular architecture characters and risk factors analysis of unstable moyamoya disease

    Get PDF
    BackgroundIn some MMD patients, the digital subtraction angiography (DSA) examination found, occlusion in the ipsilateral internal carotid artery or middle cerebral artery, accompanied by the formation of numerous moyamoya vessels. Conversely, the contralateral internal carotid artery or middle cerebral artery shows signs of stenosis without the presence of moyamoya vessels. Notably, cerebral perfusion studies reveal a similar or even more severe reduction in perfusion on the occluded side compared to the stenotic side. Importantly, clinical symptoms in these patients are typically attributed to ischemia caused by the stenotic side. This condition is referred to as unstable moyamoya disease (uMMD).ObjectiveThis clinical research focuses on evaluating risk factors related to MMD and developing strategies to minimize postoperative complications. The study aims to analyze vascular characteristics and identify potential risk factors in patients with uMMD.MethodsThe authors reviewed consecutive cases with complete clinical and radiological documentation of patients who underwent surgery between January 2018 and June 2023. Univariate analysis and multivariate logistic regression analysis were employed to understand the risk factors and prognosis of postoperative complications in uMMD.ResultsPostoperative complications were retrospectively analyzed in 1481 patients (aged 14 to 65). Among them, 1,429 patients were assigned to the conventional treatment group, while 52 were in the unstable moyamoya disease group. The uMMD treatment group showed a significantly higher incidence of early postoperative complications such as RIND, cerebral infarction, and cerebral hemorrhage (p < 0.05). Univariate and multivariate logistic regression analyses were conducted on the postoperative complications of 52 uMMD patients. Initial symptoms of stenosis ≤50% (univariate: p = 0.008, multivariate: p = 0.015; OR [95% CI] =23.149 [1.853–289.217]) and choosing occluded side surgery (univariate: p = 0.043, multivariate: p = 0.018; OR [95% CI] =0.059 [0.006–0.617]) were identified as significant risk factors for postoperative neurological complications.ConclusionCompared to the conventional treatment group, uMMD has higher complication rates, with vascular stenosis degree and surgical side selection identified as significant risk factors. A comprehensive understanding of preoperative clinical symptoms and vascular characteristics in moyamoya disease patients, coupled with the formulation of rational surgical plans, contributes positively to decreasing postoperative mortality and disability rates in uMMD

    High Dose Vitamin E Attenuates Diabetic Nephropathy via Alleviation of Autophagic Stress

    Get PDF
    It has been reported that autophagic stress, which is involved in many diseases, plays a key role in the development of diabetic nephropathy (DN). In this study, we investigated the effects of high dose vitamin E on renal tubular epithelial cells and autophagic stress-related mechanisms in diabetes condition. In diabetic rats, high dose vitamin E treatment significantly decreased the serum creatinine, urea nitrogen, urinary albumin and urinary protein, reduced the levels of LCN2, HAVCR1, LDH and 8-OHdG in urine, and attenuated the cellular apoptosis and interstitial fibrosis in renal cortex. In vitro, vitamin E could reduce the release of LCN2 and HAVCR1 and the protein levels of caspase 3 and TGF-β1, as well as improve the growth inhibition in cultured HK-2 cells after exposure to advanced glycation end products (AGEs). Also, LC3-II and SQSTM1-positive dots were significantly increased in the renal tubular epithelial cells of DN patients and diabetic rats, and in HK-2 cells after exposure to AGEs, which were markedly declined by vitamin E. In addition, we found that the autophagosome formation was not affected by AGEs, as assessed by the mRNA levels of LC3B, Beclin-1, and ATG7. However, AGEs blocked the lysosomal degradation of autophagosome, which was characterized by a decrease in the enzymatic activity of cathepsin B/cathepsin L and DQ-ovalbumin degradation in HK-2 cells, indicating that AGEs-induced accumulation of autophagic vacuoles was a sign of autophagic stress. Interestingly, vitamin E exerted a protective effect on lysosomes to reduce the autophagic stress. Taken together, we conclude that autophagic stress may play an important part in the progression of DN, and alleviation of autophagic stress though improvement of lysosomal function provides a promising novel approach for treating DN

    The effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission of omicron BA.2 variant: a retrospective cohort study in Shenzhen, China

    Get PDF
    Little studies evaluated the effectiveness of booster vaccination of inactivated COVID-19 vaccines against being infected (susceptibility), infecting others (infectiousness), and spreading the disease from one to another (transmission). Therefore, we conducted a retrospective cohort study to evaluate the effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission in Shenzhen during an Omicron BA.2 outbreak period from 1 February to 21 April 2022. The eligible individuals were classified as four sub-cohorts according to the inactivated COVID-19 vaccination status of both the close contacts and their index cases: group 2-2, fully vaccinated close contacts seeded by fully vaccinated index cases (reference group); group 2-3, booster-vaccinated close contacts seeded by fully vaccinated index cases; group 3-2, fully vaccinated close contacts seeded by booster-vaccinated index cases; and group 3-3, booster-vaccinated close contacts seeded by booster-vaccinated index cases. Univariate and multivariate logistic regression analyses were applied to estimate the effectiveness of booster vaccination. The sample sizes of groups 2-2, 2-3, 3-2, and 3-3 were 846, 1,115, 1,210, and 2,417, respectively. We found that booster vaccination had an effectiveness against infectiousness of 44.9% (95% CI: 19.7%, 62.2%) for the adults ≥ 18 years, 62.2% (95% CI: 32.0%, 78.9%) for the female close contacts, and 60.8% (95% CI: 38.5%, 75.1%) for the non-household close contacts. Moreover, booster vaccination had an effectiveness against transmission of 29.0% (95% CI: 3.2%, 47.9%) for the adults ≥ 18 years, 38.9% (95% CI: 3.3%, 61.3%) for the female close contacts, and 45.8% (95% CI: 22.1%, 62.3%) for the non-household close contacts. However, booster vaccination against susceptibility did not provide any protective effect. In summary, this study confirm that booster vaccination of the inactivated COVID-19 vaccines provides low level of protection and moderate level of protection against Omicron BA.2 transmission and infectiousness, respectively. However, booster vaccination does not provide any protection against Omicron BA.2 susceptibility

    The Modulatory Properties of Li-Ru-Kang Treatment on Hyperplasia of Mammary Glands Using an Integrated Approach

    Get PDF
    Background: Li-Ru-Kang (LRK) has been used in the treatment of hyperplasia of mammary glands (HMG) for several decades and can effectively improve clinical symptoms. This study aims to investigate the mechanism by which LRK intervenes in HMG based on an integrated approach that combines metabolomics and network pharmacology analyses.Methods: The effects of LRK on HMG induced by estrogen-progesterone in rats were evaluated by analyzing the morphological and pathological characteristics of breast tissues. Moreover, UPLC-QTOF/MS was performed to explore specific metabolites potentially affecting the pathological process of HMG and the effects of LRK. Pathway analysis was conducted with a combination of metabolomics and network pharmacology analyses to illustrate the pathways and network of LRK-treated HMG.Results: Li-Ru-Kang significantly improved the morphological and pathological characteristics of breast tissues. Metabolomics analyses showed that the therapeutic effect of LRK was mainly associated with the regulation of 10 metabolites, including prostaglandin E2, phosphatidylcholine, leukotriene B4, and phosphatidylserine. Pathway analysis indicated that the metabolites were related to arachidonic acid metabolism, glycerophospholipid metabolism and linoleic acid metabolism. Moreover, principal component analysis showed that the metabolites in the model group were clearly classified, whereas the metabolites in the LRK group were between those in the normal and model groups but closer to those in the normal group. This finding indicated that these metabolites may be responsible for the effects of LRK. The therapeutic effect of LRK on HMG was possibly related to the regulation of 10 specific metabolites. In addition, we further verified the expression of protein kinase C alpha (PKCα), a key target predicted by network pharmacology analysis, and showed that LRK could significantly improve the expression of PKCα.Conclusion: Our study successfully explained the modulatory properties of LRK treatment on HMG using metabolomics and network pharmacology analyses. This systematic method can provide methodological support for further understanding the complex mechanism underlying HMG and possible traditional Chinese medicine (TCM) active ingredients for the treatment of HMG

    Interleukin-33 Contributes to the Induction of Th9 Cells and Antitumor Efficacy by Dectin-1-Activated Dendritic Cells

    Get PDF
    We recently discovered that dectin-1-activated dendritic cells (DCs) drive potent T helper (Th) 9 cell responses and antitumor immunity. However, the underlying mechanisms need to be further defined. The cytokine microenvironment is critical for Th cell differentiation. Here, we show that dectin-1 activation enhances interleukin (IL)-33 expression in DCs. We found that blocking IL-33/ST2 inhibits dectin-1-activated DC-induced Th9 cell differentiation. More importantly, the addition of IL-33 further promotes Th9 cell priming and antitumor efficacy induced by dectin-1-activated DCs. Mechanistically, in addition to the promotion of Th9 and Th1 cells, dectin-1-activated DCs combined with IL-33 abolish the activity of IL-33 in the induction of regulatory T cells. Furthermore, the combined treatment of dectin-1-activated DCs and IL-33 increases the frequencies of CD4+ T cells by fostering their proliferation and inhibiting their exhaustive differentiation. Thus, our results demonstrate the important role of IL-33 in dectin-1-activated DC-induced Th9 cell differentiation and antitumor efficacy, and suggest that the combination of dectin-1-activated DCs and IL-33 may present a new effective modality of DC-based vaccines in tumor immunotherapy

    Numerical Analysis of Spoilers and Chamfered Corners for Mitigating Wind Loads on Low-Rise Flat Roof Buildings

    Get PDF
    Leveraging the SST k-ω turbulence model, this study analyzes the effects of implementing wind-resistance measures, such as spoilers and chamfered corners, on the wind load distribution and wind field bypass characteristics on the surface of low-rise flat roof buildings under wind directions of 0°, 15°, 30°, and 45°. The findings indicate that spoilers can effectively mitigate the wind pressure on the roof, achieving optimal pressure reduction when the spoiler height (h) ranges from 0.3 to 0.4 and the spoiler width (b) varies between 0.6 and 0.7, regardless of the wind direction. Furthermore, chamfering the flat roof decreases the absolute value of the roof wind pressure coefficient as the chamfering radius increases, with a radius of 1.0 m providing the most effective local wind resistance, Cpmean is reduced by about 61.8%, 57.5%, 61%, and 46% compared to the original flat roof, Cpmin is reduced by about 41.8%, 56.3%, 44.9%, 44.6% compared to the original flat roof.. However, incorporating a spoiler on a chamfered flat roof building only marginally reduces the absolute value of the roof wind pressure coefficient, setting not recommended. For instance, at a 0° wind angle, both the buildings with and without spoilers and the chamfered flat roof buildings with chamfer radii of 0.0 m and 0.5 m generate relatively small vortices on the windward sides. These are followed by two more noticeable return vortices on the leeward side, with the scale of these vortices increasing as the spoiler angle and chamfer radius increase

    Study and Application of Polymer Film-Forming Shielding Plugging Drilling Fluid System

    Get PDF
    To solve the low cementing quality of acoustic logging and some distensible well diameters in high permeable layer of Daqing Lamadian oilfield, we have carried out the study and field application of polymer film-forming shielding plugging drilling fluid system. By adding this polymer film-forming shielding plugging agent to macromolecule emulsion drilling fluid, the shielding and plugging effect will be improved. Combined with the experiment and analysis, we optimize the adding amount of this agent to improve the performance of drilling fluid system. From the application effect, the cementing quality of acoustic logging has been improved obviously. This system has been applied in 20 wells and there are 15 high quality wells. The merit factor of well cementing reaches 75%
    • …
    corecore