57 research outputs found

    Assessment of cholesterol homeostasis in the living human brain

    Get PDF
    Alterations in brain cholesterol homeostasis have been broadly implicated in neurological disorders. Notwithstanding the complexity by which cholesterol biology is governed in the mammalian brain, excess neuronal cholesterol is primarily eliminated by metabolic clearance via cytochrome P450 46A1 (CYP46A1). No methods are currently available for visualizing cholesterol metabolism in the living human brain; therefore, a non-invasive technology that quantitatively measures the extent of brain cholesterol metabolism via CYP46A1 could broadly impact disease diagnosis and treatment options using targeted therapies. Here we describe the development and testing of a CYP46A1-targeted positron emission tomography (PET) tracer. 18F-CHL-2205(18F-Cholestify). Our data show that PET imaging readouts correlate with CYP46A1 protein expression and with the extent to which cholesterol is metabolized in the brain, as assessed by cross-species post-mortem analyses of specimens from rodents, non-human primates and humans. Proof-of-concept of in vivo efficacy is provided in the well-established 3xTg-AD murine model of Alzheimer’s disease (AD), where we show that the probe is sensitive to differences in brain cholesterol metabolism between 3xTg-AD mice and control animals. Further, our clinical observations point towards a considerably higher baseline brain cholesterol clearance via CYP46A1 in women, as compared to age-matched men. These findings illustrate the vast potential of assessing brain cholesterol metabolism using PET and establish PET as a sensitive tool for non-invasive assessment of brain cholesterol homeostasis in the clinic

    Concentrations of bile acid precursors in cerebrospinal fluid of Alzheimer's disease patients

    Get PDF
    Using liquid chromatography – mass spectrometry in combination with derivatisation chemistry we profiled the oxysterol and cholestenoic acid content of cerebrospinal fluid from patients with Alzheimer’s disease (n = 21), vascular dementia (n = 11), other neurodegenerative diseases (n = 15, Lewy bodies dementia, n = 3, Frontotemporal dementia, n = 11) and controls (n = 15). Thirty different sterols were quantified and the bile acid precursor 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acid found to be reduced in abundance in cerebrospinal fluid of Alzheimer’s disease patient-group. This was the only sterol found to be changed amongst the different groups

    Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion

    Get PDF
    The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), has swept the world in unprecedented speed. In a few months, SARS-CoV-2 has infected millions of people and caused tens of thousands of deaths. There are no Food and Drug Administration-approved antivirals or vaccines yet available and clinical treatments are limited to supportive therapies that help alleviate the symptoms. Thus, there is an urgent need to identify effective antivirals as countermeasures before safe and effective vaccines are developed, tested, and then produced on a large scale. Our approach is to harness the germline-encoded interferon antiviral response to inhibit SARS-CoV-2 replication thereby limiting its pathogenicit

    Identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human cerebrospinal fluid and plasma

    Get PDF
    Dihydroxyoxocholestenoic acids are intermediates in bile acid biosynthesis. Here, using liquid chromatography – mass spectrometry, we confirm the identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in cerebrospinal fluid (CSF) based on comparisons to authentic standards and of 7α,12α-dihydroxy-3-oxocholest-4-en-26-oic and 7α,x-dihydroxy-3-oxocholest-4-en-26-oic (where hydroxylation is likely on C-22 or C-23) based on exact mass measurement and multistage fragmentation. Surprisingly, patients suffering from the inborn error of metabolism cerebrotendinous xanthomatosis, where the enzyme CYP27A1, which normally introduces the (25R)26-carboxylic acid group to the sterol side-chain, is defective still synthesise 7α,24-dihydroxy-3-oxocholest-4-en-26-oic acid and also both 25R- and 25S-epimers of 7α,12α-dihydroxy-3-oxocholest-4-en-26-oic acid. We speculate that the enzymes CYP46A1 and CYP3A4 may have C-26 carboxylase activity to generate these acids. In patients suffering from hereditary spastic paraplegia type 5 the CSF concentrations of the 7α,24- and 7α,25-dihydroxy acids are reduced, suggesting an involvement of CYP7B1 in their biosynthesis in brain

    Cholesterol metabolism pathways – are the intermediates more important than the products?

    Get PDF
    Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein-coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine

    Formation and metabolism of oxysterols and cholestenoic acids found in the mouse circulation: Lessons learnt from deuterium-enrichment experiments and the CYP46A1 transgenic mouse

    Get PDF
    While the presence and abundance of the major oxysterols and cholestenoic acids in the circulation is well established, minor cholesterol metabolites may also have biological importance and be of value to investigate. In this study by observing the metabolism of deuterium-labelled cholesterol in the pdgfbret/ret mouse, a mouse model with increased vascular permeability in brain, and by studying the sterol content of plasma from the CYP46A1 transgenic mouse overexpressing the human cholesterol 24S-hydroxylase enzyme we have been able to identify a number of minor cholesterol metabolites found in the circulation, make approximate-quantitative measurements and postulate pathways for their formation. These “proof of principle” data may have relevance when using mouse models to mimic human disease and in respect of the increasing possibility of treating human neurodegenerative diseases with pharmaceuticals designed to enhance the activity of CYP46A1 or by adeno-associated virus delivery of CYP46A1

    Mass Spectrometry Imaging of Cholesterol and Oxysterols

    Get PDF
    Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a colour scale. As mass spectra are recorded at each pixel the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires ionisation of analytes but cholesterol and other neutral sterols tend to be poorly ionised by the techniques employed in most MSI experiments, so despite its high abundance in mammalian tissues cholesterol is poorly represented in the MSI literature. In this article we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders and the potential of MSI to study cholesterol, its precursors and its metabolites in animal models and from human biopsies will be discussed
    • …
    corecore