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Every cell in vertebrates possesses the machinery to synthesise cholesterol

and to metabolise it. The major route of cholesterol metabolism is conver-

sion to bile acids. Bile acids themselves are interesting molecules being

ligands to nuclear and G protein-coupled receptors, but perhaps the inter-

mediates in the bile acid biosynthesis pathways are even more interesting

and equally important. Here, we discuss the biological activity of the differ-

ent intermediates generated in the various bile acid biosynthesis pathways.

We put forward the hypothesis that the acidic pathway of bile acid biosyn-

thesis has primary evolved to generate signalling molecules and its
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utilisation by hepatocytes provides an added bonus of producing bile acids

to aid absorption of lipids in the intestine.

Introduction

Cholesterol metabolism has been studied for many

decades [1–3]. In mammals, the products of cholesterol

metabolism are bile acids, and steroid hormones and

their metabolites [4,5]. While bile acids and steroid

hormones are of undoubted importance, in recent

years interest has shifted to intermediates in their

biosynthesis and to a category of molecules known as

oxysterols [6–9]. Oxysterols can be defined as oxidised

forms of cholesterol or of its precursors. They are

formed in the first steps of cholesterol metabolism,

mostly by cytochrome P450 (CYP) enzymes [3,4,10].

They can also be formed via nonenzymatic reactions

both in vivo and ex vivo [11–13]. Many oxysterols have

biological activity being ligands to, for example

nuclear receptors, G protein-coupled receptors

(GPCRs) and glutamate receptors [6,8,9,13].

There are many areas of biology in which oxysterols

play a role. At the very beginning of life, oxysterols are

key molecules in embryonic development acting along

with other sterols to transmit the Hedgehog (Hh) signal

[14], a key pathway for fate determination of stem cells

and progenitor cells. Oxysterols activate this pathway

by binding to Smoothened (Smo), a GPCR found at the

cell membranes of primary cilia [15]. Oxysterols also

appear as key molecules for definition of neural progen-

itor fate by activating the liver X receptors (LXRs)

[16,17], while cholestenoic acids, downstream metabo-

lites of oxysterols, are important for survival or death

of motor neurons [18]. Oxysterols have been also linked

to cancer, through overactivation of Hh signalling and

via many other mechanisms [9,15,19]. While some oxys-

terols are oncogenic, others appear to be protective

against cancer [9]. Perhaps unsurprisingly as oxidised

forms of cholesterol, oxysterols are implicated in the

atherosclerotic process being found in atherosclerotic

plaques [20]. Oxysterols also appear to be involved in

the immune response, having either inflammatory or

anti-inflammatory properties [21–24], and are generated

in response to both bacterial infection and viral infec-

tion [25–27]. There is growing evidence that certain

oxysterol may inhibit infection by the SARS-CoV-2

virus (COVID-19) [28–31].
Accepting that oxysterols are critical biological

molecules, it is important to remember that oxysterols

are a family of molecules, where small changes in

geometry can lead to the difference between activity

and inactivity. It is also crucial to be aware that oxys-

terol concentrations are very often determined follow-

ing a base hydrolysis step where oxysterols esterified to

fatty acids are released, so what is actually being deter-

mined is the sum of the free molecules and their esteri-

fied versions. Usually, oxysterol esters are more

abundant than the nonesterified molecules, but it is the

nonesterified molecules that are biologically active.

Today, mass spectrometry (MS) in combination with

liquid chromatography (LC), that is LC-MS, or with

gas chromatography (GC), that is GC-MS, is almost

exclusively used for oxysterol measurements [32–37].
In the following sections, we will attempt to summarise

the current ‘state of play’ in oxysterol research and

endeavour to highlight key unresolved questions. We

arrange the review by rotating around the major pri-

mary oxysterols derived from cholesterol (Fig. 1),

looking at biological activity and downstream metabo-

lites.

25-hydroxycholesterol (25-HC)

25-HC is an unusual oxysterol in that cholesterol 25-

hydroxylase (CH25H, EC:1.14.99.38) is not a CYP

enzyme but is a member of a small group of proteins

that utilise a diiron cofactor to catalyse hydroxylation

[38]. Note, 25-HC can also be formed as a minor side

product in reactions catalysed by CYP3A4 (EC:1.14.

14, CYP3A11 in mouse), CYP27A1 and CYP46A1

[4,10,39,40]. In normal circumstances, the level of 25-

HC is low in tissues and in the circulation [33,41];

however, upon bacterial or viral infection CH25H

(Ch25h in mouse) is upregulated in activated macro-

phages with the consequent enhanced formation of 25-

HC [23,25–27,42–44]. 25-HC is reported to be anti-in-

flammatory and antiviral [21,26,27,45], and this
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information has stimulated much interest in 25-HC in

relation to SARS-CoV-2 [29–31]. CH25H is an inter-

feron (IFN)-stimulated gene, IFN being induced by

Toll-like receptor (TLR) 3 and TLR4 ligands upon

bacterial infection [43,44]. Upon SARS-CoV-2 viral

infection, IFN, CH25H and other IFN-stimulated

genes are upregulated [29,31]. Zang et al. identified 25-

HC as a potent inhibitor of SARS-CoV-2 replication,

explaining this by 25-HC blocking cholesterol export

from the late endosome/lysosome compartment and

restricting SARS-CoV-2 spike protein catalysed mem-

brane fusion [29]. Interestingly, inhibition of Nie-

mann–Pick C1 protein (NPC1), the cholesterol

transporter that transports cholesterols out of late

endosomes/lysosomes, also inhibited SARS-CoV-2

replication, supporting the theory that blocking choles-

terol export from late endosomes/lysosomes inhibits

viral replication (Fig. 2) [29].

Deficiency in NPC1 (95% of cases) or NPC2 (5% of

cases) leads to Niemann–Pick type C disease. While

NPC1 protein transports cholesterol across the

organelle membrane, NPC2 protein is soluble and car-

ries nonesterified cholesterol to the NPC1 transporter

[46]. Niemann–Pick type B disease shows some clinical

and biochemically similarities to the type C disease

[47,48], but is genetically different, in that the type B

disease results from mutations in the SMPD1 gene,

and deficiency in the enzyme activity of acid sphin-

gomyelinase (EC:3.1.4.12). It has been suggested that

acid sphingomyelinase stimulates NPC2-mediated

cholesterol export by converting sphingomyelin to cer-

amide in the inner membranes of late endosomes [49],

and the consequence of its deficiency is enhanced

cholesterol content of lysosomes. In support of the

hypothesis of Zang et al. [29] that blocking cholesterol

export from late endosomes/lysosomes inhibits viral

replication, Carpinteiro et al. [50] have recently found

that inhibiting acid sphingomyelinase prevents SARS-

CoV-2 uptake by epithelial cells, although their expla-

nation for the involvement of acid sphingomyelinase in

SARS-CoV-2 infection was at the level of ceramide in

the outer leaflet of the plasma membrane. An

Fig. 1. Structure of primary oxysterols and downstream metabolites. Cholesterol is shown in red, cholesterol precursors in purple and

oxysterols in black. Enzymes are written in blue, and nonenzymatic oxidation is indicated by [O] in green. In 7b,26-diHC and 26H,7O-C,

R1 = OH and R2 = H, while in 7b,25-diHC and 25H,7O-C, R1 = H and R2 = OH.

3The FEBS Journal (2021) ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Y. Wang et al. Cholesterol metabolism

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC:3/1/4/12.html


alternative explanation for the antiviral activity of 25-

HC against SARS-CoV-2 is provided by Wang et al.

[31] who found CH25H to be induced by SARS-CoV-

2 in vitro, and suggested the antiviral activity of 25-

HC to be via inhibition of membrane fusion through

depletion of plasma membrane cholesterol as a conse-

quence of activation of acyl-CoA cholesterol acyltrans-

ferase (EC:2.3.1.26), an enzyme that converts free

cholesterol to its cholesteryl ester. Hence, one sug-

gested mechanism of 25-HC antiviral action is through

cholesterol accumulation in the late endosomes, block-

ing membrane fusion and restricting the virus to this

compartment [29], while a second mechanism is

through depletion of plasma membrane cholesterol

inhibiting viral membrane fusion and entry [31]. A

combination of both mechanisms would suggest that

25-HC can block membrane fusion and viral entry by

reducing the available nonesterified cholesterol in

membranes by inhibiting transport of cholesterol out

of the late endosome/lysosome compartment and

through activation of acyl-CoA cholesterol acyltrans-

ferase. In Fig. 2, we present a simplified cartoon repre-

sentation of the involvement of 25-HC in preventing

viral infection.

It is interesting to note that neither of the antiviral

mechanisms discussed above invoked inhibition of

SREBP-2 (sterol regulatory-binding protein-2) process-

ing or activation of LXRs, two key regulators of cellu-

lar cholesterol status. 25-HC suppresses cholesterol

biosynthesis by binding to the endoplasmic resident

protein INSIG (insulin-induced gene) tethering

SREBP-2 and its escort protein SCAP (SREBP cleav-

age-activating protein) within the endoplasmic reticu-

lum and preventing transport of SREBP-2 to the

Golgi for processing to its active form as the master

transcription factor for the expression of genes of the

cholesterol biosynthesis pathway [51]. Blanc et al. [26]

proposed this mechanism to partially explain the

antiviral action of macrophage produced 25-HC

towards a broad range of viruses, while Dang et al.

[45] suggested inhibition of SREBP-2 processing by

25-HC prevents AIM2 (absent in melanoma 2) inflam-

masome activation in macrophages and provides an

anti-inflammatory circuit that prevents spurious AIM2

inflammasome activation. 25-HC is also a ligand to

the LXRs [52,53], LXR activation leads to upregula-

tion of SREBP-1c and fatty acid synthesis [54], and

also of the ABC (ATP-binding cassette) transporters

Fig. 2. Simplified cartoon representation of the involvement of 25-HC in protection against SARS-CoV-2 infection. (A) The virus enters the

cell via endocytosis. Viral RNA escapes from the endosome/lysosome compartment by membrane fusion in concert with NPC2–NPC1-

mediated export of cholesterol. 25-HC inhibits NPC1-mediated cholesterol export and traps the virus in the late endosome/lysosome

compartment [29]. Alternatively, (B) 25-HC may activate acyl-CoA cholesterol acyltransferase and sequester cholesterol as the ester,

depleting the availability of plasma membrane nonesterified cholesterol required for membrane fusion and viral entry [31].
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including ABCA1, ABCG1 and the cholesterol carrier

protein apolipoprotein E (APOE) [55,56]. In combina-

tion, the activation of LXR leads to removal of free

cholesterol from cells by esterification, transport out of

the cell by ABC transporters and its ultimate removal

via apolipoproteins in the circulation. Hence, LXR

activation by 25-HC, and also 25-HC binding to

INSIG, may provide additional mechanisms for inhibi-

tion of COVID-19 infection through depletion of

membrane cholesterol.

There is now good cell-based evidence that 25-HC is

protective against SARS-CoV-2 through a mechanism

involving depletion of membrane cholesterol. The mul-

tiple biological activities of 25-HC suggest that 25-HC

may have a multipronged mechanism for depleting

membrane cholesterol and hence defence against the

virus. It is interesting to note that total 25-HC (sum of

biologically active nonesterified 25-HC and its inactive

esterified form) is elevated in patients suffering mild

SARS-CoV-2 [28], suggesting the successful defence

against the virus by 25-HC may be via its enhanced

biosynthesis.

Key issues to resolve

Despite the availability of vaccines against SARS-

CoV-2, which are being offered to citizens in rich

countries of the developed world, it is questionable

whether people in the developing world will be availed

such a ‘luxury’. It is also unknown at present how

effective the vaccines will be over time. Hence, alterna-

tive low-cost strategies still require exploration. Once

such alternative is treatment with the BCG vaccine,

which is known to activate the TLR4 [57] and will pre-

sumably enhance the expression of IFN [58], so should

theoretically enhance CH25H expression and the

biosynthesis 25-HC, leading to protection against

SARS-CoV-2.

7a,25-dihydroxycholesterol (7a,25-diHC), 7b,25-
dihydroxycholesterol (7b,25-diHC) and 25-hydroxy-7-

oxocholesterol (25H,7O-C)

7a,25-diHC is the major metabolic product of 25-HC

formed in a reaction catalysed by CYP7B1 (EC:1.14.

14.29) [59]. It can also be formed from 7a-hydroxyc-
holesterol (7a-HC) in a reaction catalysed by CYP3A4

(EC:1.14.14) in human and CYP3A11 (EC:1.14.14) in

mouse [60]. 7a,25-diHC does not show antiviral activ-

ity [29], and neither has it been shown to have an

effect on SREBP-2 processing or LXR activation.

However, 7a,25-diHC is a ligand towards the GPCR

Epstein–Barr virus-induced gene 2 (EBI2 or GPR 183)

[22,24] and acts as a chemoattractant to B and T cells

expressing the receptor. Hence, in contrast to 25-HC,

which can be regarded as anti-inflammatory [21,45],

7a,25-diHC is a proinflammatory lipokine. Further

metabolism of 7a,25-diHC leads to 7a,25-dihydroxyc-
holest-4-en-3-one (7a,25-diHCO) catalysed by the

enzyme hydroxysteroid dehydrogenase (HSD) 3B7

(EC:1.1.1) and further to 7a,25-dihydroxy-3-oxoc-
holest-4-en-26-oic acid (7a,25-diH,3O-CA), probably

catalysed by CYP27A1 [61]. Interestingly, 7a,25-
diH,3O-CA has been found to be of reduced abun-

dance in cerebrospinal fluid (CSF) from patients with

Alzheimer’s disease (AD) [62], linking the pathology

with proinflammatory 7a,25-diHC.

Like 7a,25-diHC, 7b,25-diHC is also a ligand to

GPR183 [22]. However, until recently pathways for the

formation of 7b,25-diHC were unknown [10,48,63,64].

Low levels of both 7b-hydroxycholesterol (7b-HC) and

7-oxocholesterol (7-OC) are always present in analysis

of cholesterol-derived oxysterols from biological sam-

ples [65]. However, the fact that both molecules can be

formed from cholesterol via ex vivo autoxidation reac-

tions makes interpretation regarding their formation

difficult, as similar reactions can also occur endoge-

nously [11]. Convincing evidence for the endogenous

nature of 7b-hydroxy and 7-oxo metabolites of choles-

terol has come from analysis of plasma from people

with Niemann–Pick type C disease [47,48,66–70]. Jiang
et al. provided data showing elevation of 7-OC, and

also of cholestane-3b,5a,6b-triol, in plasma from Nie-

mann–Pick type C patients [68]. While more recently,

we found elevated levels of both these two cholesterol

derivatives and also 7b-HC in plasma of patients suf-

fering from both Niemann–Pick type C and type B

disease [48]. How can we be sure that these are

endogenous molecules, not artefacts generated by

ex vivo autoxidation of cholesterol? Strong evidence

for their endogenous nature would be downstream

enzymatic products also evident in plasma or urine

from Niemann–Pick patients. In fact, Alvelius et al.

found unusual 7-oxo- and 7b-hydroxy bile acids in

serum and urine from a Niemann–Pick type C patient

in 2001 [66], and these identifications were confirmed

by Maekawa et al. [71], and by Clayton and col-

leagues, who also identified a bile acid derived from

cholestane-3b,5a,6b-triol [70]. Further evidence for the

in vivo nature of 7b-HC and 7-OC was the discovery

of an entire metabolic pathway from these molecules

to 3b,7b-dihydroxychol-5-enoic and 3b-hydroxy-7-oxo-
chol-5-enoic acids [48]. In patients with Niemann–Pick
disease, it is likely that 7b-HC and 7-OC are derived

by free radical oxidation of cholesterol [48,66]. Once

formed, 7-OC and 7b-HC are interconvertible through
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the HSD11B enzymes [72,73]. HSD11B1 (EC:1.1.1) is

the 7-OC reductase, and HSD11B2 (EC:1.1.1), the 7b-
HC dehydrogenase. Both 7b-HC and 7-OC are sub-

strates for CH25H, giving 7b,25-diHC and 25H,7O-C,

respectively, and the two products can be intercon-

verted by HSD11B enzymes [63]. Importantly, 7b,25-
diHC will act as a chemoattractant and activator of

GPR183 but 25H,7O-C will not [22,63].

However, 25H,7O-C itself is a biologically active

molecule, binding and activating the GPCR protein

Smo [64], a member of the Frizzled class of GPCRs.

Smo plays a part in the Hh signalling pathway, its

activation leading to Hh signalling through Gli

(glioma-associated oncogene homolog) transcription

factors. The Hh pathway is essential for proper cell

differentiation, and defects in the pathway lead to

dysmorphology and cancer. Other key proteins in the

Hh pathway are patched-1 (Ptch1), a sterol transport

protein structurally related to NPC1 [74], and the

Hh ligand, for example Sonic hedgehog (SHH) post-

translationally modified with cholesterol [75]. Like

Niemann–Pick disease, Smith–Lemli–Opitz syndrome

(SLOS) is an autosomal recessive monogenetic disor-

der presenting with elevated 7b-HC and 7-OC in

plasma and tissues [64,76,77]. SLOS also presents

with dysmorphology and phenocopies defective Hh

signalling [78]. 25H,7O-C is present at elevated levels

in plasma from SLOS patients [64], perhaps acting

as a modulator of Smo in competition with other

sterol activators. 7b,25-diHC will also activate Smo

and is also found in plasma from SLOS patients

[64]. It is likely that the mechanisms behind the

biosynthesis of 7b,25-diHC and 25H,7O-C in Nie-

mann–Pick disease and SLOS are different. In SLOS,

there is a deficiency in 7-dehydrocholesterol reductase

(DHCR7, EC:1.3.1.21), one of the final enzymes in

the cholesterol biosynthesis pathways [79], and the

consequence of this is a build-up in 7-dehydrocholes-

terol (7-DHC). Like cholesterol, 7-DHC is a sub-

strate for CYP7A1 (EC:1.14.14); however, the

enzyme products are different, in that the product of

CYP7A1 oxidation of 7-DHC is 7-OC rather than

7a-HC, which is formed from cholesterol [76,80].

Hence, elevated levels of 7-OC in SLOS are a likely

consequence of CYP7A1 oxidation of 7-DHC. As

discussed above, 7-OC can be reduced to 7b-HC by

HSD11B1 and both can be oxidised to give a 25-hy-

droxy product, that is 25H,7O-C and 7b,25-diHC,

respectively. We have proposed pathways by which

25H,7O-C and 7b,25-diHC can be metabolised fur-

ther to 3b,7b,25-trihydroxycholest-5-enoic acid and

ultimately the C24 bile acid 3b,7b-dihydroxychol-5-
enoic acid [64].

Key issues to resolve and new ideas

GPR183 has been shown to direct the movement of

activated B cells expressing this receptor to outer folli-

cle regions of secondary lymphoid organs as required

for mounting a normal B-cell response to immune

challenge. 7a,25-diHC, 7b,25-diHC and also 7a,(25R)

26-dihydroxycholesterol (7a,26-diHC) all act as

chemoattractants to B and T cells expressing GPR183.

However, the gradient of 7a/b,25-diHC or 7a,26-diHC

has yet to be measured across lymph nodes to add fur-

ther evidence to the involvement of these oxysterols in

the immune response. One attractive concept is that

high levels of 7a,25-diHC in the lymph node outer fol-

licle attract B cells to mount the inflammatory

response, while 7a,26-diHC, derived from the circula-

tion, reverses the motion, thereby switching off the

immune response. Measurements of these oxysterols in

tissue should now be possible with the advent of oxys-

terol mass spectrometry imaging (MSI) [81]. With

respect to Hh signalling, Smo and oxysterols, it is

unclear how in vitro activity of oxysterols translates to

the situation in vivo, as besides oxysterols, cholesterol

will also bind to and activate Smo [75]. If cholesterol

rather than oxysterols is the true regulator of the Hh

signal, the question is how can such an abundant

sterol have signalling functions? Perhaps the answer

lies in measuring cholesterol and oxysterol levels in

primary cilia, the locality of Smo during the signalling

event. Such experiments should now be possible with

the advent of sterol-MSI and will answer the question

of whether oxysterols and/or cholesterol dictate Hh

signalling [81].

24-hydroxycholesterol (24-HC)

There are two isomers of 24-HC, 24S-HC and 24R-

HC. The 24S-HC epimer is dominant in man and

mouse with 24R-HC normally constituting of only

about 10% of the total in the circulation [82]. 24S-HC,

or cerebrosterol, is as the name suggests mostly syn-

thesised in brain [36,83]. The enzyme responsible for

24S-hydroxylation of cholesterol is CYP46A1 (EC:1.

14.14.25), which is mostly expressed in neurons [40].

24S-HC acts as a transport form of cholesterol provid-

ing a route for removal of excess cholesterol from

brain by crossing the blood–brain barrier, something

that cholesterol itself cannot do [36]. Once extracere-

bral, 24S-HC can be sulfated, glucuronidated or con-

verted to bile acids [84–86]. The 24-hydroxycholesterol

7a-hydroxylase is CYP39A1 (EC:1.14.14.26), required

to synthesise primary bile acids from 24S-HC, and is

mostly expressed in liver [87].
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No inborn error of metabolism has been found

resulting from a deficiency in CYP46A1 activity, and

the Cyp46a1�/� mouse is viable, showing a compara-

tively mild phenotype with deficiencies in spatial, asso-

ciative and motor learning, and in hippocampal long-

term potentiation (LTP) [88,89]. Interestingly, in these

mice the defect in cholesterol metabolism in brain is

compensated by its reduced biosynthesis, the overall

level of cholesterol in brain being unchanged in the

Cyp46a1�/� mouse compared with control [90,91].

24S-HC, like 25-HC, is a ligand to the LXRs [52,53]

and to INSIG [51], and it is also a modulator of the

N-methyl-D-aspartate receptors (NMDARs) [92] and

of Smo [93]. It is perhaps significant that 24S-HC, via

NMDARs, enhances the ability of subthreshold stim-

uli to induce LTP [92], considering that the absence of

24S-HC biosynthesis in the Cyp46a1�/� mouse is

linked with a defect in LTP [89].

As 24S-HC is generated almost exclusively by neu-

rons in brain, its concentration in CSF and plasma

has been explored as a marker of neurodegeneration

[94]. In early stage disease, one might predict an initial

rise in 24S-HC, as neuronal loss leads to enhanced

availability of cholesterol, the substrate for CYP46A1,

but at later stages a decay in 24S-HC as ever-increas-

ing numbers of neurons, and hence CYP46A1

enzymes, is lost from brain. This can make data inter-

pretation challenging unless samples are well-stratified.

This is illustrated below.

In a recent study, Bj€orkhem et al. [95] found 24S-

HC to be elevated in CSF from early Parkinson’s

disease (PD) patients in comparison with controls.

The same investigators had previously found that

CSF 24S-HC levels correlate with PD disease pro-

gression [96]. In contrast to the situation in CSF, the

level of 24S-HC in plasma was not found to differ

between PD patients and controls [96]. These data

suggest that elevated 24S-HC in CSF is a marker of

neurodegeneration. In patients with AD, 24S-HC is

again elevated in CSF, and this is also true of

patients with mild cognitive impairment, but as with

PD no differences were found in plasma levels of

24S-HC [97]. Interestingly, 24S-HC in CSF was

found to increase according to APOE4 (apolipoprotein

E 4) status, patients with two APOE4 alleles having

the highest 24S-HC content of CSF [97]. However, in

plasma from severely affected AD patients the same

investigators found the 24S-HC to cholesterol ratio

to be decreased in AD [98], presumably as a conse-

quence of loss of CYP46A1 expressing neurons. In a

separate study, 24S-HC was found to be increased in

plasma of AD patients, but the levels to negatively

correlate with the severity of dementia [99]. Clearly,

care must be exercised in stratifying patient samples

to maximise the mechanistic insight provided by ana-

lytical data. Note, in these studies total 24S-HC was

measured, that is the sum of esterified and nonesteri-

fied 24S-HC.

Levels of 24S-HC have also been measured in

plasma of patients with Huntington’s disease (HD),

and concentrations found to vary according to disease

severity. Leoni et al. [100] measured 24S-HC in a

major study of 150 samples and found that 24S-HC

was elevated in an early progression HD group com-

pared with controls, but reduced compared with con-

trols in a latter progression HD group. These data

were at variance with an earlier study performed by

Leoni et al. who found 24S-HC to be reduced in HD

plasma at all disease states [101].

The CSF and plasma measurements discussed above

were all for total 24-HC, which constitutes the sum of

nonesterified and esterified 24-HC. Usually, the nones-

terified, biologically active molecules constitute only

about 20% of the total [34]. In the circulation, oxys-

terols are esterified with fatty acids in a reaction catal-

ysed by the enzyme lecithin–cholesterol acyltransferase
(LCAT, EC:2.3.1.43) present in HDL particles. CSF

lipoproteins tend to be small and spherical (� 10–
20 nm)-like plasma HDL [102], and human CSF

contains LCAT at levels corresponding to � 2.5%

that of plasma LCAT [103]; however, the very minor

levels of nonesterified 24-HC (0.05 ng�mL�1 cf.

1.5 ng�mL�1esterified) in CSF indicate that this is suf-

ficient to esterify most of the nonesterified 24S-HC

that is present [62,104].

Major unresolved questions

In combination, the data presented above lead to

the conclusion that metabolism of cholesterol to

24S-HC is essential for brain health. However, is

24S-HC per se an essential oxysterol? Evidence from

studies on the Cyp46a1�/� mouse suggests that it is

the flow through the cholesterol biosynthesis path-

way that is essential rather than 24S-HC itself

[88,89]. However, 24S-HC is a modulator of the

NMDARs, and a ligand to INSIG, LXRs and Smo,

at least in vitro, and it is difficult to define its exact

importance in activating these pathways as multiple

other oxysterols (and sterols) have similar effects on

these receptor proteins. A second important question

is how good is 24S-HC as a marker of neurodegen-

eration? From the studies mentioned above, it is

very important to have well-stratified groups to see

a statistical effect. Is this of diagnostic value? The

jury is still out.
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24S,25-epoxycholesterol (24S,25-EC)

24S,25-EC is one of the most efficacious endogenous

LXR ligands [52,53]. It is an unusual oxysterol in that

the mechanism of its formation involves cholesterol

precursors [105,106]. There are two likely pathways:

(a) 24S,25-EC may be synthesised in parallel to the

Bloch pathway of cholesterol biosynthesis but with

squalene epoxidase (SQLE, also named squalene

monooxygenase, EC:1.14.14.17) introducing two oxy-

gen atoms, one to give a 2,3S-epoxide and a second to

give a 22S,23-epoxide, to the squalene skeleton rather

than just one to give the 2,3S-epoxide. The two

branches then proceed in parallel to give 24S,25-EC

and cholesterol, respectively, the only difference being

that 24-dehydrocholesterol reductase (DHCR24, EC:1.

3.1.72) is absent from the pathway to generate 24S,25-

EC [6,105,107]. Lanosterol synthase (LSS, EC:5.4.99.7)

is the enzyme that will cyclase both the squalene

mono- and di-epoxides, and its reduced activity will

encourage di-epoxide formation and ultimately that of

24S,25-EC. (b) The alternative pathway to 24S,25-EC

is via CYP46A1 catalysed oxidation of desmosterol

[106].

24S,25-EC is seldom characterised in biological sam-

ples [33,65], and this is a consequence of its compara-

tively low abundance and the labile nature of the

24S,25-epoxy group. However, it has been analysed in

studies, which do not include an acid or base hydroly-

sis step [15–17,81,93,108–110]. In comparison with

other oxysterols, 24S,25-EC appears to be particularly

prevalent in brain during development, perhaps a con-

sequence of a high rate of cholesterol biosynthesis

[16,17,109–111]. 24S,25-EC acts as a ligand towards

LXRs [52,53], and Theofilopoulos et al. have generated

compelling evidence that 24S,25-EC, acting through

LXRs, promotes midbrain dopaminergic neurogenesis

[16,17]. Besides acting as an LXR ligand, 24S,25-EC

will also bind to INSIG and repress cholesterol synthe-

sis [51]. A more recently uncovered activity of 24S,25-

EC is as a ligand to Smo and activator of the Hh sig-

nalling pathway [15,93,112]. Cilia are protuberances

on the outside of cells, which are required for Smo to

transduce Hh signals. Smo accumulates in cilia, and

cilia-associated sterols promote this accumulation and

Hh signalling. In search for sterols, which may activate

the Hh pathway, Raleigh et al. [15] investigated the

oxysterols enriched in cilia isolated from sea urchin.

One of the oxysterols found was 24S,25-EC. 24S,25-

EC was found to bind to the extracellular cysteine-rich

domain (CRD) of Smo and activate Smo in a dose-de-

pendent manner. Interestingly, 24S,25-EC also acti-

vated Hh signalling through mutant Smo missing the

CRD [15]. Molecular docking studies suggested

24S,25-EC also bound to a cytoplasmic binding pocket

and mutation studies indicated that Smo activation by

24S,25-EC was via both binding sites [15]. Ptch1 is key

protein involved in inhibition of the Hh pathway, act-

ing as a sterol pump to deplete membranes of sterols.

In an effort to identify sterols linked to Hh signalling,

Qi et al. purified Ptch1 protein and identified 24S,25-

EC as one of the oxysterols co-purified with Ptch1

[93]. They found evidence for 24S,25-EC bound to the

7-transmembrane region of Smo and to be more effec-

tive at activating Hh signalling than other sterols [93].

In combination, the data of Raleigh et al. and Qi et al.

establish 24S,25-EC as a ligand of Smo that can bind

to multiple binding pockets and activate Hh signalling

[15,93]. The biological activities of 24S-HC and

24S,25-EC appear to overlap in that both activate

LXRs, inhibit cholesterol biosynthesis via INSIG and

repression of SREBP-2 processing, and both are

ligands to Smo. 24S-HC and 24S,25-EC are abundant

in brain, and we speculate that brain biology has built

a layer of redundancy in that CYP46A1 expressed in

neurons and SQLE expressed in glia can each direct

synthesis of the biologically active 24S-oxidised sterols,

that is 24S-HC and 24S,25-HC, respectively. Perhaps

this explains the comparatively mild phenotype of the

Cyp46a1�/� mouse.

Key issue

The 24S,25-EC to cholesterol ratio is comparatively

high during brain development [16,17,109–111]. This

leads us to speculate that during brain development

24S,25-EC acts as an in vivo ligand to Smo and con-

trols Hh signalling and Hh-linked development.

(25R)26-Hydroxycholesterol (26-HC)

26-HC, more commonly known by the nonsystematic

name 27-hydroxycholesterol (27-HC), is the first inter-

mediate in the ‘acidic’, also known as the ‘alternative’,

pathway of bile acid biosynthesis [2,4,10]. It is synthe-

sised from cholesterol by CYP27A1 (EC:1.14.15.15)

and metabolised further to 3b-hydroxycholest-5-en-
(25R)26-oic acid (3b-HCA) or to 7a,(25R)26-dihydrox-

ycholesterol (7a,26-diHC) by CYP27A1 and CYP7B1,

respectively. 3b-HCA and 7a,26-HC are both biologi-

cally active, the former as a ligand towards LXRs

[18,113], and the latter as a ligand to GPR183 (see

above) [22]. 26-HC is in its own right an LXR ligand,

although a comparatively weak agonist [53]. 26-HC is

also a selective oestrogen receptor modulator (SERM)

in that it shows anti-oestrogenic effects or pro-
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oestrogenic effects that are cell type-specific [114,115].

Oestrogen receptors (ERs) are expressed in vascular

cells and mediate cardioprotective effects of oestro-

gens. However, Umetani et al. [114] have shown that

26-HC can act as a competitive antagonist of ER in

the vasculature leading to a loss of oestrogen protec-

tion towards vascular disease. ERs are also expressed

by breast cancer cells, and there is evidence that 26-

HC acts as a partial agonist in these cells [19,115,116].

Given that 26-HC is a direct product of cholesterol

metabolism, these findings have implications with

respect to breast cancer and hypercholesteraemic

women. In fact, Wu et al. found that in ER(+) breast
cancer (ER(+)BC) patients the 26-HC content of nor-

mal tissue was higher than that from controls, and

tumour 26-HC levels were further elevated [116]. In a

study published at almost exactly the same time, Nel-

son et al. [19] reported that in breast tissue CYP27A1

levels correlate with tumour grade. Nelson et al. [19]

showed that 26-HC stimulated ER(+)BC proliferation

through the ER and invasiveness through LXR. In a

later study, Nelson [117] proposed that inhibition of

CYP27A1 along with ERa and LXR antagonists could

increase the efficacy of treatments towards ER(+)BC.
Surprisingly, in the light of the discussion above, a

systematic review and meta-analysis of prospective

studies found a modest but statistically significant

inverse association between total cholesterol, more

specifically HDL cholesterol, and the risk of breast

cancer [118]. In addition, in a study of almost 300

breast cancer cases no association was found between

circulating 26-HC and breast cancer risk [119], and in

postmenopausal women, circulating 26-HC was associ-

ated with a lower risk of breast cancer [120]. Unfortu-

nately, the authors of these reports did not clarify

whether they were measuring the total 26-HC, that is

the sum of the inactive ester and the active nonesteri-

fied molecule or just the active nonesterified molecule.

The reader is left to guess, but in all probability a

reported value of about 200 nM (80 ng�mL�1) in

plasma refers to the total 26-HC. As discussed else-

where, there is a need for clarity in reporting of mass

spectrometry data [121].

Like 25-HC, nonesterified 26-HC has been suggested

to be an antiviral oxysterol [28]. Marcello et al., measur-

ing total 26-HC, found the plasma level of this oxysterol

in severely affected COVID-19 patients to be almost

half that in control subjects [28]. Serum levels of choles-

terol and its precursors were low in both moderate and

severe COVID-19 cases, possibly explaining reduced

levels of 26-HC. Notably, levels of antiviral 25-HC were

also reduced in severe COVID-19 cases, although the

reduction was not great (8.52 � 2.58 ng�mL�1 in

controls cf. 7.64 � 2.49 ng�mL�1 in severe cases).

Importantly, the reader should be reminded that total

sterols were being measured not the nonesterified bioac-

tive molecules.

Perhaps the reduced availability of cholesterol to

cells is a key aspect in the pathophysiology of

COVID-19 leading to reduced biosynthesis of antiviral

25-HC and 26-HC. However, based on studies suggest-

ing 25-HC is antiviral through reducing cholesterol

availability to membranes [29] it might be expected

that reduced serum cholesterol would be beneficial in

protection against COVID-19.

Key issue

Are total oxysterol levels a good surrogate measure for

concentrations of the nonesterified bioactive molecules?

As LCAT is abundant in HDL particles and will esterify

sterols, it not an unreasonable assumption that the

levels of esterified oxysterols are reflective of bioactive

nonesterified oxysterols exported from cells. However,

care should be taken when relating concentrations of

the total oxysterol measured in plasma to that required

for an in vitro or in vivo biological activity.

Cholestenoic acids: 3b-HCA, 3b,7a-dihydroxycholest-5-
en-(25R)26-oic (3b,7a-diHCA), 3b,7b-dihydroxycholest-
5-en-(25R)26-oic (3b,7b-diHCA) and 3b-hydroxy-7-
oxocholest-5-en-(25R)26-oic (3bH,7O-CA) acids

3b-HCA and 3b,7a-diHCA are intermediates in the

acidic pathway of bile acid biosynthesis [4,10], and

both these molecules, and the downstream metabolite

7a-hydroxy-3-oxocholest-4-en-(25R)26-oic acid

(7aH,3O-CA), are present in CSF and/or brain

[41,62,81]. Meaney et al. [122] have shown that

7aH,3O-CA provides a metabolic export route for 26-

HC from brain, which itself is imported to brain, and

is the first metabolite in the acidic pathway of bile acid

biosynthesis [4,10]. Both 3b-HCA and 3b,7a-diHCA

are LXR ligands, as are 3b,7b-diHCA and 3bH,7O-

CA, but not 7aH,3O-CA [18,113]. Interestingly, The-

ofilopoulos et al. showed that in the developing brain

3b,7a-diHCA promoted motor neuron survival in an

LXR-dependent manner, 3bH,7O-CA promoted matu-

ration of precursors into motor neurons, while 3b-
HCA was toxic, showing that cholestenoic acids dic-

tate the balance between life and death of motor neu-

rons [18]. In a more recent study, Abdel-Khalik et al.

[64] have shown that 3b,7b-diHCA and 3bH,7O-CA

activate Hh signalling by binding to Smo, highlighting

a further potential role for cholestenoic acids in devel-

opment.
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New ideas

In the light of the biological activity of 26-HC, 7a,26-
diHC and of the cholestenoic acids, we speculate that

the acidic pathway evolved as more than a pathway of

bile acid biosynthesis. The widespread expression of

CYP27A1 contrasts to that of liver-specific CYP7A1,

the first enzyme in the neutral pathway of bile acid

biosynthesis [4,10], and it may also be significant that

CYP27A1 is an inner mitochondrial enzyme, in contrast

to most other CYPs involved in cholesterol metabolism,

which are localised to the endoplasmic reticulum. We

suggest that the acidic pathway initially evolved to gen-

erate biologically active signalling molecules and its

development within hepatocytes provided the bonus of

bile acid formation to remove excess cholesterol and to

aid absorption in the intestine of dietary lipids. This

hypothesis is supported by the activity of the acidic

pathway during embryonic development [18,109] and

data that suggest that in infants the acidic pathway is

more important than the neutral pathway of bile acid

biosynthesis [123]. Kakiyama et al. [124] have proposed

a somewhat similar evolutionary role for bile acid

biosynthesis. They suggest that the acidic pathway

evolved as a mechanism to remove excess cholesterol

from the inner mitochondrial leaflet by CYP27A1 meta-

bolism to 26-HC, with further metabolism regulated by

endoplasmic reticulum-resident CYP7B1. They then

proposed that an inability of the acidic pathway to

increase the synthesis of bile acids without generating

toxic intermediates leads to evolution of the neutral

pathway starting with CYP7A1 and generating less-

toxic intermediates [124]. The two hypothesises differ in

that Kakiyama and Pandak focus on toxic intermedi-

ates and a requirement for a different and neutral path-

way [124], while we focus more on the positive effects of

intermediates of the acidic pathway.

Cholestan-5,6-epoxide (5,6-
epoxycholesterol, 5,6-EC) and
cholestane-3b,5a,6b-triol

There are two isomers of 5,6-EC with either 5a or 5b
stereochemistry. Both are formed by free radical oxida-

tion of cholesterol [11]. Both isomers can be hydrolysed

by the enzyme cholesterol epoxide hydrolase (ChEH,

EC:3.3.2.11) to cholestane-3b,5a,6b-triol. ChEH is an

unusual enzyme in that it made up of two subunits, each

of which is an enzymes in its own right, and part of the

cholesterol biosynthesis pathway, that is DHCR7 and

3b-hydroxysterol-D8-D7-isomerase (D8D7I, EC:5.3.3.5)

[125]. As mentioned above, cholestane-3b,5a,6b-triol is
elevated in the circulation people with Niemann–Pick

type C and type B disease and also those with lysosomal

acid lipase (LIPA, EC:3.1.1.13) deficiency, known as

Wolman disease when there is a complete absence of the

enzyme [48,68,126]. The origin of cholestane-3b,5a,6b-
triol is likely to be via hydrolysis of 5,6-EC, which is

also elevated in Niemann–Pick and in Wolman diseases

[48]. Cholestane-3b,5a,6b-triol can be metabolised via

multiple reactions to bile acids [48,69,70], or alterna-

tively oxidised by HSD11B2 to 3b,5a-dihydroxyc-
holestan-6-one (oncosterone, 3b,5a-diHC-6O). As the

trivial name oncosterone implies, 3b,5a-diHC-6O is a

tumour promoter (Fig. 3) [127].

Oncosterone has been shown to promote prolifera-

tion of mouse and human ER(+)BC and triple-nega-

tive breast cancer cell lines, and growth of breast

cancer tumours in vivo [127]. The proliferative effects

of oncosterone are through its activation of the gluco-

corticoid receptor (GR) [127]. Interestingly, corticos-

teroid ligands to GR do not share the proliferative

activities of oncosterone [9]. Oncosterone also acts as a

ligand to the LXR receptors, and it has been suggested

that the pro-invasive effects of oncosterone are medi-

ated by LXR [127].

An alternative route for metabolism of 5a,6-EC, but
not 5b,6-EC, is enzymatic conjugation with an amine

nucleophile. Two such nucleophiles showed to react

with 5a,6-EC in chemically catalysed reactions are his-

tamine and spermidine to give dendrogenin A (DDA)

and dendrogenin B (DDB), respectively. Both of these

metabolites have now been identified in mammalian

systems [128]. In contrast to oncosterone, DDA is

oncosuppressive. Importantly, DDA is not detected in

cancer cell lines, and its level in breast tissue is

decreased during oncogenesis [129]. The oncosuppres-

sive effects of DDA are at least part through activa-

tion of LXRb, inducing autophagy and cell

differentiation [130], while a second pathway is

through inhibition of ChEH and follow-on inhibition

of biosynthesis of oncosterone.

A Role in therapeutic development

The studies discussed above regarding metabolism of

5,6-EC indicate three potential targets for pharmaceu-

tical intervention:

1 The balance between cholestane-3b,5a,6b-triol and

oncosterone is dependent on the enzymes HSD11B2

and HSD11B1. Inhibition of HSD11B2 will reduce

the formation of oncosterone.

2 ChEH generates cholestane-3b,5a,6b-triol from 5,6-

EC. Inhibition of ChEH should reduce the forma-

tion of cholestane-3b,5a,6b-triol and consequently
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that of oncosterone. Likewise, inhibition of ChEH

should shunt 5a,6-EC towards the biosynthesis of

DDA that is oncosuppressive through LXRb.
3 A quite different idea is the upregulation of

CYP27A1. Assuming from the studies of Le Cornet

and coworkers that there is no correlation between

circulating 26-HC and breast cancer risk [119,120],

and in direct contrast to the suggestion of Nelson to

inhibit CYP27A1 [117], enhancing CYP27A1 expres-

sion or activity should drive cholestane-3b,5a,6b-
triol into the bile acid biosynthesis pathway and

away from metabolism by HSD11B2 to oncos-

terone. These ideas are yet to be tested.

22R-hydroxycholesterol (22R-HC)

Cholesterol is converted to 22R-HC by CYP11A1

(EC:1.14.15.6). Like CYP27A1, CYP11A1 is a resident

of the innermitochondrial membrane. CYP11A1 can

then convert 22R-HC to 20R,22R-dihydroxycholes-

terol (20R,22R-diHC) and ultimately the C21 steroid,

pregnenolone. These reactions may or may not pro-

ceed with the release of the oxysterol intermediates

[131,132]. Like other side-chain oxysterols, 22R-HC is

a ligand to LXRs and an inhibitor of SREBP-2 pro-

cessing to its active form [51,52]. The metabolism of

20R-HC and 20R,22R-diHC to bile acids rather than

steroids is another story yet to be told.

Cholesterol precursors and their
oxysterol derivatives

The hypothesis that the acidic pathway evolved to

generate biologically active intermediates can be

extended to include the Kandutsch–Russell and Bloch

pathways of sterol biosynthesis. Lanosterol, the first

sterol, has been shown to stimulate INSIG-mediated

degradation of HMGCoA reductase (HMGCR, EC:1.

1.1.34), the enzyme catalysing the rate-determining

step of cholesterol synthesis, and remarkably, 26-hy-

droxylanosterol, also called 27-hydroxylanosterol, is

10 times more potent [133]. Other sterols in the Kan-

dutsch–Russell and Bloch pathways with 4,4-dimethyl

groups were shown to similarly accelerate the degra-

dation of HMGCR, as does 25-HC [133,134]. Lanos-

terol does not repress the SREBP-2 activation of

cholesterol biosynthesis, but in contrast to initial data

[133], other 4,4-dimethyl sterols are reported to inhibit

SREBP-2 activation [134]. At the other end of the

cholesterol biosynthesis pathway from lanosterol,

desmosterol inhibits the processing of SREBP-2 and

acts as a ligand towards LXRs [135]. As discussed

above, desmosterol acts as a substrate for CYP46A1

generating biologically active 24S,25-EC [106], which

can also be formed in a shunt of the Bloch pathway

[105]. 7-DHC, the final member of the Kandutsch–
Russell pathway, is also a source of bioactive metabo-

lites, and these may be formed enzymatically, or via

free radical reactions, 7-DHC being particularly sus-

ceptible to nonenzymatic oxidation. For example,

3b,5a-dihydroxycholest-7-en-6-one, formed by hydrol-

ysis and oxidation of 7-dehydrocholesterol-5a,6-epox-
ide, is a Hh pathway antagonist binding to Smo at a

site distinct from the CRD and the cyclopamine

pocket [136]. As discussed earlier, 7-DHC can be con-

verted to 7-OC by CYP7A1 [80], and this opens a

route to 7b-HC and multiple biologically active oxys-

terols [22,64,137].

Fig. 3. 5,6-EC at the fulcrum of protection against and the proliferation of cancer.
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Conclusions

Oxysterols and other intermediates in the bile acid

biosynthesis pathways have interested sterol chemists

for decades [13]. It appears that while the neutral path-

way of bile acid biosynthesis generates intermediates

with comparatively little biological activity, the reverse

appears to be the case with the acidic pathway. The

prominence of the acidic pathway in early life high-

lights the importance of its intermediates, and as sug-

gested above, it is tempting to speculate that the acidic

pathway evolved to generate and regulate biologically

active molecules, and its utilisation by hepatocytes

provided an added bonus of generating bile acids.

Besides the acidic pathway, other pathways to bile

acids, and also to steroid hormones, generate bioactive

intermediates. In which case, progression towards bile

acids may also be a way of regulating lipokine biosyn-

thesis and metabolism in specific cell types and tissues,

for example CYP46A1 is expressed in brain; CH25H

in activated immune cells; and CYP11A1 in sex organs

and the adrenal gland. In contrast to these three

enzymes, CYP27A1, initiating the acidic pathway, and

CYP7B1 acting as the 7a-hydroxylase in this pathway

are rather ubiquitously expressed and can be ‘lent’ to

the different bile acid biosynthesis pathway to help

regulate the formation/metabolism of the active inter-

mediates (Fig. 4). Of course, an ultimate function of

bile acid formation is also to remove excess choles-

terol.

Bile acids can also be synthesised from oxysterols

generated by nonenzymatic reactions. Incredibly, inter-

mediates in these pathways also have biological activ-

ity. While 7-OC and 7b-HC can also be formed

enzymatically, an enzyme to generate 5,6-EC has yet

to be isolated. Is there one, or has the pathway from

5,6-EC evolved exclusively to remove products of

cholesterol oxidation formed by reactive oxygen spe-

cies?

The multiple pathways to bile acids provide redun-

dancy in the biological system with many intermedi-

ates sharing similar activities, and this is probably the

reason why most of the inborn errors of bile acid

biosynthesis are not fatal, and the equivalent knockout

mice are viable. However, these inborn errors do lead

to disease indicating the imperfection of the back-up

system.

The huge range of bile acid intermediates, the cross-

over of pathways, sharing of enzymes, shuttling of

oxysterols between different organelles, cell types and

Fig. 4. The acidic pathway of bile acid biosynthesis generates bioactive intermediates. Key enzymes in this pathway, CYP27A1 and

CYP7B1, can be lent to different bile acid biosynthesis pathways to similarly generate and regulate other lipokines.
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tissues make this a fascinating field to work in, with

still many important discoveries to be made.
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