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ABSTRACT

Dihydroxyoxocholestenoic acids are intermediates in bile acid biosynthesis. Here, using liquid chroma-
tography — mass spectrometry, we confirm the identification of 7a,24-dihydroxy-3-oxocholest-4-en-26-
oic and 7a,25-dihydroxy-3-oxocholest-4-en-26-oic acids in cerebrospinal fluid (CSF) based on compar-
isons to authentic standards and of 7a,12a-dihydroxy-3-oxocholest-4-en-26-oic and 7a,x-dihydroxy-3-
oxocholest-4-en-26-oic (where hydroxylation is likely on C-22 or C-23) based on exact mass measure-
ment and multistage fragmentation. Surprisingly, patients suffering from the inborn error of metabolism
cerebrotendinous xanthomatosis, where the enzyme CYP27A1, which normally introduces the (25 R)26-
carboxylic acid group to the sterol side-chain, is defective still synthesise 7a,24-dihydroxy-3-oxocholest-
4-en-26-oic acid and also both 25R- and 25 S-epimers of 7a,12a-dihydroxy-3-oxocholest-4-en-26-oic
acid. We speculate that the enzymes CYP46A1 and CYP3A4 may have C-26 carboxylase activity to
generate these acids. In patients suffering from hereditary spastic paraplegia type 5 the CSF concen-
trations of the 7a,24- and 7a,25-dihydroxy acids are reduced, suggesting an involvement of CYP7B1 in

their biosynthesis in brain.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

hydroxylated by CYP7B1 to give 3f,7a-dihydroxycholest-5-en-
(25 R)26-oic acid (CA>-3p,7a-diol). Once 7a-hydroxylated, the acid

Bile acids are formed from cholesterol via enzyme catalysed
reactions through numerous intermediates [1]. These in-
termediates include cholestenoic acids, unsaturated C,7 carboxylic
acids derived from cholesterol. 3-Hydroxycholest-5-en-(25 R)26-
oic acid (CA3-3p-ol), the simplest cholestenoic acid, is be formed
by (25 R)26-hydroxylation of cholesterol followed by oxidation to
the (25R)26 carboxylic acid; both reactions catalysed by the
enzyme cytochrome P450 (CYP) 27A1 (Fig. 1A). This acid is then
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is a substrate for the enzyme hydroxysteroid dehydrogenase (HSD)
3B7, which is a 3B-hydroxysteroid dehydrogenase A°, A% isomerase,
giving the product 7a-hydroxy-3-oxocholest-4-en-(25 R)26-o0ic
acid (CA*-70-o0l-3-one) [2]. Alternatively, the two 7a-hydroxy
acids can be formed from 7a-hydroxycholesterol (C>-3,7a-diol)
with (25 R)26-hydroxylation and carboxylation preceding or suc-
ceeding oxidation and isomerisation in the ring system (Fig. 1A). In
2010 Ogundare et al. reported the detection of CA>-3p-ol and CA*-
70-0l-3-one in human cerebrospinal fluid (CSF) and also partially
identified two dihydroxy-3-oxocholest-4-en-26-oic acids [3]. At
that time authentic standards were unavailable to exactly identify
the latter two acids. Ogundare et al. were able to identify C-7 as one
of the sites of hydroxylation but made only tentative suggestions of
the locations of the second hydroxy groups [3]. Since the study by
Ogundare et al. [3] others have confirmed the presence of CA>-38-ol

0300-9084/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Intermediates in bile acid biosynthesis pathways. (A) Formation of dihydroxy-3-oxocholest-4-en-26-oic acids from cholesterol via the acidic, neutral and 25-hydroxylase

pathways [1,2]. In the acidic and neutral pathway stereochemistry at C-25 is assumed to be 25 R unless otherwise indicated. (B) Formation of (25 R)CA*-70,24 S-diol-3-one and

(25 S)CA*-70,24 S-diol-3-one via the 24 S-hydroxylase pathway (red box) [21] and of 25 S- and 25 R-epimers of CA*-7a,12a-diol-3-one in the absence of CYP27A1 [26] (gold box). For
simplicity the formation and hydrolysis of CoA-thioesters in the steps preceding and succeeding C-25 racemisation are not shown. (C) Latter steps of the acidic pathway proceeding

mostly in the peroxisome leading to the four diastereomers of CA%-74,24-diol-3-one. In liver the dominant product is (25 R)CA*-74,24 R-diol-3-one. The inset shows the formation

of (25 S)CA*-74,24 R-diol-3-one from its CoA-thioester following C-25 racemisation. In CTX the enzyme CYP27A1 is deficient, while in SPG5 CYP7B1 is deficient. Abbreviations:
ACOX2: acyl-coenzyme A oxidase 2. AMACR: a-methylacyl-CoA racemase. BACS: bile acid-CoA synthetase. C: Cholestane. CA: Cholestanoic acid. CH25H: Cholesterol 25-hydroxylase.
CYP: Cytochrome P450. DBP: D-Bifunctional Protein. HSD3B7: 3B-Hydroxysteroid dehydrogenase type 7. LBP: L-Bifunctional protein. SPCx: Sterol carrier protein x. VLCS: Very long

chain Co-A synthetase. The dihydroxy-3-oxocholest-4-en-26-oic acids CA*-70,25-diol-3-one, CA*-70,120-diol-3-one and CA*-74,24-diol-3-one are colour coded green, gold and red,

respectively.
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and CA*-70-0l-3-one in human CSF [4,5]. It is noteworthy that CA*-
70-0l-3-one was detected by Nagata et al. in chronic subdural he-
matoma, but analytical methods of the time were insufficient to
detect the acid in normal CSF [6], although Axelson et al. had found
it to be a normal constituent of human blood [7]. Note, with the
exception of 25-hydroxy acids, unless specifically stated otherwise
stereochemistry at C-25 is assumed to be 25R.

Cholestenoic acids with a 3f-hydroxy-5-ene structure have
been shown to be ligands to the liver X receptors (LXRs) a and B,
CA>-3p,7a-diol displaying neuroprotective properties while its
epimer CA’-3p,7B-diol and CA>-3p-ol being neurotoxic [3,8,9]. CA%-
7a-ol-3-one is not a ligand to LXR, and the biological properties of
down-stream acids are unknown [9].

Here we describe the identification and quantification, using
enzyme-assisted derivatisation and liquid chromatography (LC) -
high resolution mass spectrometry (HRMS) with multistage frag-
mentation (MS"), of the dihydroxy-3-oxocholest-4-en-26-oic acids
reported earlier by Ogundare et al. in human CSF [3]. The current
study goes beyond that of Ogundare et al. [3], Saeed et al. and
Schols et al. [4,5] in that we have specifically targeted multiply
hydroxylated acids, exploiting synthetic standards to confirm,
where possible, identifications made by LC-HRMS(MS") and per-
formed quantification in CSF and in plasma.

2. Materials and methods
2.1. Materials

The reagents and solvents were as described in Abdel-Khalik
et al. [10]. The authentic standards of 3,7a,24 S-trihydrox-
ycholest-5-en-(25 R)26-oic acid ((25 R)CA®-3pB,70,24 S-triol) and
3B,7a,25-trihydroxycholest-5-en-(25 R/S)26-oic acid (CA>-
3B,7a,25-triol) were from Avanti Polar Lipids Inc (Alabaster, AL).
Their 3-oxo0-4-ene analogues, 7a,24 S-dihydroxy-3-oxocholest-4-
en-(25 R)26-oic acid ((25 R)CA*-74,24 S-diol-3-one) and 70,25-
dihydroxy-3-oxocholest-4-en-(25 R/S)26-oic acid (CA*-7a,25-diol-
3-one), were prepared by treatment with cholesterol oxidase from
Streptomyces sp (Sigma-Aldrich, Gillingham, Dorset UK) (Fig. 2).

All CSF and plasma samples were provided with written
informed consent and institutional review board (IRB) approval
and were collected according to the principles of the Declaration of
Helsinki. Control CSF (n = 42) was from previous studies performed
in Swansea, collected from subjects with no known genetic defect
in cholesterol biosynthetic or metabolic enzymes. CSF from cere-
brotendinous xanthomatosis (CTX, n = 6) patients was collected as
part of an IRB-approved study at Oregon Health & Science Uni-
versity (OHSU), Portland, OR (see Supplemental Table 1 for muta-
tion data). Plasma from CTX (n=13) and CSF (n=3) and plasma
(n=2) from hereditary spastic paraplegia type 5 (SPG5) patients
were from earlier studies in Swansea [9] or provided by the Athens
Medical Center. Control plasma (n=24), from subjects with no
known genetic defect in cholesterol biosynthetic or metabolic en-
zymes, was from a previous study in Swansea [10].

2.2. Sample preparation and analysis

Two hundred and fifty uL of CSF was added dropwise to 2.1 mL
of ethanol containing 2 ng of [?H7]24(R/S)-hydroxycholesterol, 2 ng
[?H7]22 R-hydroxycholest-4-en-3-one, 2ng  [*H;]7a-hydrox-
ycholesterol, 1.38 ng [*Hg]7a,25-dihydroxycholesterol, 4 ng [*Hg]
25-hydroxyvitamin D3 and 800 ng [*Hy]cholesterol. Each sample
was sonicated for 5 min, after which 0.65 mL of water was added
dropwise while continuing to sonicate. Sonication was continued
for a further 5 min. The solution was centrifugation at 2400 g, 4 °C,
for 30 min. The supernatant, now in 3 mL of 70% ethanol, was

loaded onto a 200mg Certified Sep-Pak Cig column (Waters,
Elstree, Herts, UK). The 3 mL eluate was combined with a column
wash of 4mL of 70% ethanol to give SPE1-Fr1 (7 mL) in which
oxysterols including cholestenoic acids elute.

The oxysterol fraction was then derivatised and analysed as
described in Abdel-Khalik et al. [10]. In brief, the oxysterol fraction
above was divided into two equal sub-fractions A and B and
lyophilised. Each sub-fraction was reconstituted in 100 puL of
propan-2-ol. One mL of 50 mM phosphate buffer pH 7 containing
0.26 u of cholesterol oxidase from Streptomyces sp (Sigma-Aldrich,
Gillingham, Dorset, UK) was added to sub-fraction A and incubated
for 1 hat 37 °C. The reaction was quenched with 2 mL of methanol.
Sub-fraction B was treated in an identical fashion but in the absence
of cholesterol oxidase. To each sub-fraction 150 pL of glacial acetic
acid was added followed by 190 mg of [*Hs]Girard P (GP) reagent as
the bromide salt to sub-fraction A and 150 mg of [*Hy]|GP as the
chloride salt to sub-fraction B. The reaction proceeded at room
temperature overnight in the dark. Excess derivatisation reagent
was then removed by re-cycling solid phase extraction (SPE) on a
60 mg Oasis HLB column (Waters, Elstree, Herts, UK). Each eluate
was diluted to half its organic content until 17.5% organic was
achieved at which point derivatised oxysterols including choles-
tenoic acids were bound to the column and unreacted GP reagent
was in the flow-through. After a wash with 10% methanol, deriva-
tised oxysterols were eluted in 2 mL of methanol. LC-HRMS(MS)™
was performed as described in Abdel-Khalik et al. [10] using a
Dionex Ultimate 3000 L C system (Dionex now Thermo Fisher Sci-
entific, Hemel Hempstead, UK) with a Cyg Hypersil Gold column
(Thermo Fisher Scientific) and Orbitrap Elite mass spectrometer
(Thermo Fisher Scientific). Quantification was by the isotope dilu-
tion method exploiting LC-HRMS data with [?H7]24(R/S)-hydrox-
ycholesterol and [?H7]22 R-hydroxycholest-4-en-3-one as internal
standards for sub-fractions A (with cholesterol oxidase) and B
(without cholesterol oxidase), respectively. Plasma samples were
prepared and analysed as described in Abdel-Khalik et al. [10] in a
similar manner to described above for CSF. Quality control (QC)
samples were prepared for plasma and CSF by combining aliquots
of control samples.

3. Results
3.1. Dihydroxy-3-oxocholest-4-en-26-oic acids in CSF

3.1.1. CA*-7a,24-diol-3-one

The authentic standard of [*Hs]GP-derivatised (25 R)CA%-
70,24 S-diol-3-one gave rise to two peaks in the LC-HRMS recon-
structed ion chromatogram (RIC) for its [M]" ion at m/z 585.4059,
corresponding to the syn and anti conformers of the derivative
(Fig. 3A, lower panel). The more abundant conformer eluted at
almost the same retention time as a chromatographic peak in the
equivalent LC-HRMS RIC from human CSF (1.99 min, Fig. 3A, upper
panel). The less abundant conformer was observed as a shoulder
(2.82 min) to an unknown peak, CA*7a,x-diol-3-one, in the CSF
sample (Fig. 3A). Note during the course of this study there was
some retention time drift as the recording of data was spread over
many months. However, there was no change in the order of elution
of cholestenoic acids as assessed by recording of QC samples within
each batch of samples.

When fragmented GP-derivatised sterols give intense [M-Py|*
ions due to loss of the pyridine (Py) ring (see Supplemental Fig. 1)
[11]. The [M-Py]" ion when fragmented further gives structure
specific MS> spectra. The MS® ([M]*—=[M-Py]*—, ie.
585.4—501.3 —) spectra acquired at 2.01 min from the CSF sample
(Fig. 4A) and 2.06 min from the authentic standard of (25 R)CA*-
70,24 S-diol-3-one (Fig. 4B) were essentially identical. A base peak
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Fig. 2. Conversion of 3B-hydroxy-5-ene acids to their 3-oxo-4-ene analogues by cholesterol oxidase enzyme from Streptomyces Sp and derivatisation with [?Hs]GP to give syn and
anti conformers. In CA®-3B,74,24 S-triol and CA*-7a,24 S-diol-3-one R;=OH and R,=H. In CA>-3f,7a,25-triol and CA*-74,25-diol-3-one R; =H and R,=OH (upper panel).
Structures of (25 S)CA*-7¢,25-diol-3-one and its isomers (25 R)CA*-7a,25-diol-3-one, (25 R)CA*-70,24-diol-3-one and (25 R)CA*-7a,12a-diol-3-one are shown in the lower panel.

fragment-ion at m/z 427.3 is characteristic for the GP-derivatised
CA*-70,24 S-diol-3-one structure. Note, MS®> spectra were gener-
ated in the ion-trap and fragment-ion measurements were accurate
to m/z + 0.1 in most cases, hence, fragment-ion m/z data is given to
only one decimal place. By generating a multiple reaction moni-
toring (MRM)-like chromatogram 585.4—501.3 —>427.3 the syn
and anti conformers of CA*-7a,24-diol-3-one are resolved from the
chemical background of the CSF sample, the conformers are evident
as peak at 1.99 and 2.79 min in Fig. 5A. The fragment-ion m/z 427.3,
probably results from loss of CO, + Hy (46 Da) from the [M-Py-CO[*
ion at m/z 473.3 via a classical charge-remote fragmentation
mechanism [12] (Supplemental Fig. 1).

By analysing oxysterol sub-fractions A and B where sample is
treated with or without cholesterol oxidase (Fig. 3C upper and
lower panels, respectively) 3p-hydroxy-5-ene sterols can be
deconvoluted from their 3-oxo-4-ene analogues. In the CSF

samples analysed about 90% of the acids were in the CA*70,24-
diol-3-one form, about 10% as CA®-3B,7a,24-triol. In the present
study the concentration of CA*-7u,24-diol-3-one was determined
to be 0.3 +0.1 ng/mL (mean + standard deviation, SD, n =42, see
Table 1). In the absence of an isotope labelled authentic standard for
the CA*-7a,24-diol-3-one, quantification was against the internal
standard [?H7]22 R-hydroxycholest-4-en-3-one. The limit of quan-
tification was 0.05ng/mL. In a separate study using identical
methodology the concentration of CA*-70,24-diol-3-one was found
to be 0.4 +0.1 ng/mL, n=15 [10]. While the current methodology
can differentiate between 7a- and 7p-hydroxy epimers, 24 S- and
24 R-hydroxy epimers and (25R)26- and (25 S)26-carboxylate
epimers [13], the availability of an authentic standards of just one
diastereomer does not allow the definitive stereochemical identi-
fication of CA*-7¢,24-diol-3-one or CA5—36,7oc,24—triol.
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authentic standard of (25 R)CA%*-74,24 S-diol-3-one (lower panel). (B) Control CSF
(upper panel), authentic standard of (25 R/S)CA%-74,25-diol-3-one (lower panel). (C)
Control CSF (SPE1-Fr1A) treated with cholesterol oxidase followed by [Hs]GP reagent
(upper panel), control CSF (SPE1-Fr1B) treated with [?Ho]GP reagent in the absence of
cholesterol oxidase (lower panel). In (C) the RICs for [?Hs]GP derivatised and [*Ho]GP
derivatised acids are plotted with the same y-axis. Data was acquired in the Orbitrap
analyser of the Orbitrap Elite instrument. Peaks corresponding to the dihydroxy-3-
oxocholest-4-en-26-oic acids CA*-7,25-diol-3-one, CA*-70,12a-diol-3-one, CA*-
74a,24-diol-3-one and CA*-7a,x-diol-3-one are colour coded green, gold, red and purple
respectively.

3.1.2. CA*-7a,25-diol-3-one

The authentic standard of CA’-3,7a,25-triol was available only
as a racemic mixture of 25 R- and 25 S-epimers. When treated with
cholesterol oxidase to give CA*-7a,25-diol-3-one and derivatised
with [*Hs]GP, four chromatographic peaks were observed in the LC-
HRMS RIC for the [M]* ion at m/z 585.4059 (Fig. 3B, lower panel).
These peaks correspond to the syn and anti conformers of the 25 R-
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and 25 S-epimers (Fig. 2). When CSF was analysed there was clear
evidence for the presence of CA*-7¢,25-diol-3-one by the appear-
ance of a shoulder at 3.47 min and a distinct peak at 4.38 min
(Fig. 3B, upper panel). To enhance sensitivity, when CSF was pre-
pared for LC-HRMS the final SPE eluate was lyophilised and
reconstituted in 90 pL of 60% methanol prior to injection on the LC
system. This resulted in a small retention time shift in comparison
to the authentic standard which was prepared in the absence of
matrix.

The MS? ([M]*—[M-Py]* —, i.e. 585.4—501.3—) spectra ac-
quired at 3.47 min for CSF (Fig. 4C) and at 3.60 min for the authentic
standard of CA*-7a,25-diol-3-one (Fig. 4D) are essentially identical.
A base peak fragment-ion at m/z 455.3 is characteristic of GP-
derivatised CA%*-70,25-diol-3-one. By recording an MRM chro-
matogram 585.4—501.3—455.3 for control CSF (Fig. 5B), two
distinct peaks are observed at 3.47 and 4.38 min allowing the reso-
lution of CA*-74,25-diol-3-one from other isomers. The fragment-
ion at m/z 455.3 is, however, not unique to CA*-74,25-diol-3-one
(Fig. 4), but the MS> spectra recorded for peaks at 3.47 (Figs. 4C)
and 4.38 min confirmed their origin to be CA%-70,25-diol-3-one. The
fragment-ion at m/z455.3 results from the loss of H,CO, from the [ M-
Py|* ion, this is likely to be through (i) a combination of dehydration
(—18 Da) and decarbonylation (—28 Da) with loss of CO from the GP
reagent and loss of the labile 25-hydroxy or 7a-hydroxy group, and/
or (ii) loss of the Cyg acid group as H,O plus CO with the second
hydrogen abstracted from the C-25-hydroxy group. This reaction
could proceed via a 6-electron classical charge-remote fragmenta-
tion mechanism[12] (Supplemental Fig. 2). As was the situation with
70,24-dihydroxy acids, the majority (>90%) of the 7a,25-dihydroxy
acid was found to be as the 3-oxo-4-ene i.e. CA%-70,25-diol-3-one.
In the current study the concentration of CA*-7a,25-diol-3-one in
CSF was determined to be 1.6 + 0.4 ng/mL (Table 1). Quantification
was against the internal standard [*H]22 R-hydroxycholest-4-en-3-
one. The limit of quantitation was 0.02 ng/mL. In an independent
study using the same method the level of CA*-7¢,25-diol-3-one in
CSF was found to be 3.0 + 1.1 ng/mL [10].

3.1.3. CA*-7a,x-diol-3-one

Two peaks, probably corresponding to syn and anti conformers,
of a more abundant but unknown dihydroxyoxocholestenoic acid
isomer, CA%-7a,x-diol-3-one, were detected at 2.62 and 3.74 min in
the LC-HRMS RIC from the CSF sample shown in Fig. 3C. As with the
70,24~ and 70,25-dihydroxy acids, the unknown compound was
predominantly in the 3-oxo-4-ene form. Its concentration was
determined here to be 5.8 + 1.5 ng/mL (Table 1) and in an earlier
study 9.2 + 3.0 ng/mL [10]. Quantification was against the internal
standard [2H7]22 R-hydroxycholest-4-en-3-one, assuming a similar
response factor to the authentic standards of the 7,24 S- and
70,25-dihydroxy acids. Based on this assumption the limit of
quantification was 0.05 ng/mL. The MS? ([M]* —[M-Py]* — ) spec-
trum acquired at 2.61 min (Fig. 4E) shows some similarity to the
fragmentation pattern to CA*-7¢,24-diol-3-one (Fig. 4A and B) and
CA*-70,25-diol-3-one (Fig. 4C and D). The pattern of fragment ions
at m/z 151.1 (*b1-12), 179.1 (*b3-28) and 231.1 (*c2-18 + 2) is char-
acteristic of GP-derivatised 7-hydroxy-3-oxo-4-ene sterols, while in
the high m/z range the neutral losses [M-Py-18]" (m/z 483.3), [M-
Py-28]* (mm/z 473.3), [M-Py-46]" (im/z 455.3) are common to GP-
derivatised acids (Supplemental Fig. 3). A triad of fragment-ions
at m/z 419.3 ([M-Py-82]7), 440.3 (M-Py-61) and 447.3 ([M-Py-54)
are distinctive of the unknown compound, CA*-7a,x-diol-3-one,
(Fig. 4E). These fragment-ions are suggested to correspond to loss of
H,CO; and 2 x H,0 (—82 Da); CO, NH, and H,0 (—61 Da), and 3 x
H,O (—54Da) from the [M-Py]® ion, respectively. A further
fragment-ion was observed at 465.3 [M-Py-36]" indicating the
presence of at least two labile hydroxy groups, supporting the
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Fig. 4. MS® ([M]* —[M-Py]* -, i.e. 585.4—501.3 — ) spectra acquired in the analyses of control CSF (A, C, E & F) and authentic standards of (25 R)CA*-74,24 S-diol-3-one (B) and
(25 R/S)CA*-74,25-diol-3-one (D). The spectra confirm the identification of CA*-70,24-diol-3-one in (A), of CA*-70,25-diol-3-one in (C), of CA*-7a,x-diol-3-one in (E) and of CA*-
70,12a-diol-3-one in (F). Data was acquired in the linear ion trap (LIT) analyser of the Orbitrap Elite hybrid instrument with an accuracy of m/z+0.1 for most fragment-ions.

suggestion of a dihydroxy-3-oxocholest-4-en-26-oic acid structure.
While one of the hydroxy groups is at C-7, most likely of 7a-ste-
reochemistry, the location of the second hydroxy group is more
difficult to assign possibly at C-22, C-23 or less likely at C-27 (in

Supplemental Fig. 3 we have assigned the second hydroxy group to
C-23).

3.14. CA*-7a,12a-diol-3-one

A second pair of peaks corresponding to an unknown dihy-
droxyoxocholestenoic acid were detected at 4.17 min and 4.62 min
in the LC-HRMS RIC shown in Fig. 3C. This metabolite was
measured here at a concentration of 1.1 + 1.1 ng/mL (Table 1). In a
separate study its concentration was determined to be 1.1 + 0.9 ng/
mL [10]. Quantification was against the internal standard [°H7]22 R-
hydroxycholest-4-en-3-one, assuming a similar response factor to
the authentic standards of the 70,24 S- and 7«,25-dihydroxy acids.
Based on this assumption the limit of quantification was 0.05 ng/
mL. Analysis of CSF with and without cholesterol oxidase treatment
revealed that the analogous trihydroxycholestenoic acid was
essentially absent.

The MS® ([M]*—[M-Py]*—) spectrum acquired at 4.16 min
(Fig. 4F) reveals many similar fragment-ions to CA*-70,24 S-diol-3-
one (Fig. 4A and B) and CA*-70,25-diol-3-one (Fig. 4C and D). The
fragment-ion pattern of m/z 151.1 (*b;-12) and 179.1 (*bs-28) is
characteristic of 7-hydroxy-3-oxo-4-ene sterols and is observed in
each spectrum, however, fragment ions at m/z 209.1 (*bs+2) and
279.2 (*c3+2), observed in the spectrum of the unknown com-
pound shown in Fig. 4F, are characteristic of 7,12-dihydroxy-3-oxo-

4-ene sterols [14] (Supplementary Fig. 4). In the high m/z range of
this spectrum, a distinctive fragment-ion of m/z 422.3 is evident.
This is analogous to an abundant ion at m/z 392.3 characteristic of
7a,120-dihydroxycholest-4-en-3-one (Supplemental Fig. 5) [14].
This fragment-ion corresponds to the neutral-loss of CO, NH and
2 x Hy0 (=79Da) from the [M-Py]|* ion (Supplementary Fig. 4).
Based on the evidence above, the unknown dihydroxyox-
ocholestenoic acid is presumptively identified as 7a,12a-dihy-
droxy-3-oxocholest-4-en-26-oic acid (CA*-7¢,120-diol-3-one). By
generating a MRM chromatogram 585.4—501.3—>422.3, CA*-
7a,120-diol-3-one is highlighted eluting at 4.16 and 4.64 min
(Fig. 5D). This further supports the identification of CA*-7a,120-
diol-3-one as empirical data shows that B- and C-ring hydrox-
ysterols usually elute later than side-chain hydroxysterols in our
chromatographic system. Unpublished data from a study of plasma
samples from patients with the peroxisomal disorder acyl-CoA
oxidase 2 (ACOX2) deficiency (Fig. 1A) where cholestenoic acids,
including 25 R- and unusually 25 S-epimers of CA*-7¢,120-diol-3-
one build-up, substantiates the identification of the 25 R-epimer
of CA%-70,12a-diol-3-one in the current study eluting at 4.16 and
4.64 min.

70,120,25-Trihydroxycholest-4-ene-3,24-dione  (C*-70,12¢,25-
triol-3,24-dione, see Supplemental Fig. 6), an intermediate in the
formation of bile acids from 25-hydroxycholesterol (C>-3p,25-diol)
[15], is an isomer of CA*-70,12a-diol-3-one. An authentic standard
of this compound is not available and it is possible that it may give a
similar MS® spectrum to that assigned to CA*-7¢,12a-diol-3-one
and contribute to some of the ion-current at 4.17 and 4.62 min.
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Fig. 3.
Table 1
Concentrations of dihydroxy-3-oxocholest-4-en-26-oic acids in CSF.
Compound Control CSF, n =42 CTX CSF,n=6 SPG5 CSF,n=3
Mean Median SD Mean Median SD Significance! Mean Median SD Significance’
ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL CTX v Control ng/mL ng/mL ng/mL SPG5 v Control
CA*-70,24-diol-3-one 030 030 0.08 0.10 0.10 0.02 P <0.01 0.07 0.09 0.07 P<0.01
CA%*-70,x-diol-3-one 5.83 5.65 1.49 ND ND NA P<0.01 0.60 0.27 0.66 P<0.01
CA*-70,25-diol-3-one 1.60 1.51 0.44 ND ND NA P<0.01 0.19? 0.05 0.27 P<0.01
(25 R)CA*-70,120-diol-3-one 1.11 0.82 1.10 0.49 0.29 0.60 P <0.05 0.64 0.72 0.17 P>0.05
(25 S)CA*-7a,12a-diol-3-one ND ND NA 0.12 0.09 0.11 P<0.01 ND ND NA NA

Quantification was made utilising LC-HRMS RICs with [>H;]22 R-hydroxycholest-4-en-3-one as the internal standard.

1. Mann-Whitney test.
2. From Ref. [9].

ND = not detected.

NA = not available.

3.2. Dihydroxy-3-oxocholest-4-en-26-oic acids in CSF from CTX
patients

CYP27A1 catalyses the (25 R)26-hydroxylation of cholesterol
and further oxidation of the (25 R)26-hydroxy group to a (25 R)26-
carboxyl group (Fig. 1A) [1,16]. Deficiency in CYP27A1, as observed
in patients suffering from CTX, leads to reduced synthesis of cho-
lestenoic acids and of the primary bile acid chenodeoxycholic acid
[9,17,18].

3.2.1. CA*-7a,24-diol-3-one, CA*-7a,25-diol-3-one, CA*-7a,12a-
diol-3-one and CA*-7a,x-diol-3-one

The LC-HRMS RICs of m/z 585.4059, corresponding to the [M]* ion
of dihydroxy-3-oxocholest-4-en-26-oic acids, recorded from CSF of
CTX patients (n = 6) gave rise to a different profile of peaks to that

observed normally in CSF (cf. Fig. 6A and Fig. 3C). Numerous peaks of
unknown identity are evident in the chromatogram from the CTX
samples. However, by generating a total ion chromatogram (TIC) for
the LC-MS? scan ([M]* —[M-Py]* —, i.e. 585.4—501.3—, Fig. 6B),
which highlights GP-derivatised compounds via the neutral-loss of
pyridine, peaks suggesting the presence of CA*-7x,24-diol-3-one
(1.86 and 2.58min) and of CA*74,12a-diol-3-one (3.74 and
4.28 min) were detected. Note, the chromatograms depicted in Figs. 3
and 6 were recorded on different days, months apart, resulting in a
shift in retention times. However, chromatographic peaks were
correlated by recording QC samples with each batch of samples.
Despite shifts in retention time between QC samples, the order of
elution of monitored analytes did not change. Further evidence for
these two acids was provided by generating RICs for the MRM tran-
sitions 585.4 — 501.3 — 427.3, which highlights CA*-7a,24-diol-3-one
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Fig. 6. Analysis of CSF from a CTX patient. (A) LC-HRMS RICs (585.4059 + 10 ppm, upper panel; 580.3745 + 10 ppm, lower panel). The upper panel shows CTX CSF (SPE1-Fr1A)
treated with cholesterol oxidase followed by [*Hs|GP reagent, while the lower panel shows CTX CSF (SPE1-Fr1B) treated with [?Ho]GP reagent in the absence of cholesterol oxidase.
The RICs for [?Hs]GP derivatised and [?Ho]GP derivatised acids are plotted with the same y-axis. Data was acquired in the Orbitrap analyser. (B) LC-MS> (585.4—501.3—) TIC
appropriate to [?Hs|GP derivatised dihydroxy-3-oxocholest-4-en-26-oic acids. LC-MS> MRM transitions appropriate to (C) CA*-7a,24-diol-3-one, (D) CA*-74,25-diol-3-one, (E) CA*-
7a,x-diol-3-one and (F) CA*-70,12a-diol-3-one. In (D) and (E) the horizontal bars indicate where the targeted acids are expected to elute. The MRMs in (C—F) were generated from
data acquired in the LIT analyser of the Orbitrap Elite hybrid instrument with an m/z window of +0.4. Chromatograms displayed in Fig. 5 and 6 were recorded on different days and
show a time shift of about 0.4 min for the later eluting peaks. Retention times were correlated by the analysis of QC samples within in each sample batch. Peaks are colour coded as

in Fig. 3.

(Fig. 6C), and 585.4—501.3—422.3, which highlights CA*-74,12a-
diol-3-one (Fig. 6F). Confirmation of the presence of CA*-74,24-diol-
3-one in CSF from CTX patients was achieved by acquisition of MS>
spectra at 1.91 and 2.52 min (Fig. 7A and B) and comparison with the
spectrum of the authentic standard (Fig. 4B). Despite the low in-
tensity of the chromatographic peaks in Fig. 6, and hence MS? spectra
in Fig. 7, fragment-ions at m/z 151.1 and 179.1 characteristic of the 7-
hydroxy-3-oxo-4-ene structure and m/z 427.3 characteristic of the
7,24-dihydroxy-3-oxocholest-4-en-26-oic acid are evident in the MS>
spectra of peaks eluting at 1.91 and 2.52 min (Fig. 7A and B). CA*-
7a,24-diol-3-one was detected in each of the six CTX CSF samples
analysed at a concentration of 0.1 +0.02 ng/mL but significantly
lower (p < 0.01, Mann-Whitney test) than in control CSF (0.3 + 0.1 ng/
mL, Table 1).

The MS? spectra of the chromatographic peaks at 3.74 and
4.28 min (Fig. 6F) give similar patterns of fragment-ions to CA*-
7a,12a-diol-3-one present in normal CSF (cf. Fig. 7D and F with 4 F).
In addition to fragment-ions at m/z 151.1 and 179.1 the spectra
show a fragment-ion at m/z 422.3 characteristic of the 712-
dihydroxy-3-oxocholest-4-en-26-oic acids. Interestingly, four
chromatographic peaks were evident in Fig. 6F giving MS> spectra
attributable to CA*-70,12a-diol-3-one (Fig. 7C—F). Normally only
two chromatographic peaks are assigned to the CA*-70,120-diol-3-

one structure (Fig. 3C). The four peaks in the CTX sample are sug-
gestive of syn and anti conformers of the 25 R- and 25 S-epimers of
CA*-70,12a-diol-3-one. A similar pattern of peaks was found in
plasma of patients suffering from ACOX2 deficiency (unpublished
data), where both epimers are expected, substantiating the current
identification.

The 25 S-epimer of CA%-7a,12a-diol-3-one, corresponding to the
earlier eluting components in the twin pairs of peaks (3.60 and
410 min in Fig. 6F), was found in CTX patients at a level of
0.1 + 0.1 ng/mL, but in normal plasma was not detected (Table 1).
The 25 R-epimer was present in five of the six CTX patients studied
(0.5+ 0.6 ng/mL) and in the other patient neither epimer was
detected. (25 R)CA*-70,12a-diol-3-one was present at significantly
lower levels in CTX CSF than in normal CSF (p <0.05). The two
epimers are interconvertible via the enzyme alpha-methylacyl-CoA
racemase (AMACR) [1].

As mentioned above, C*-70,12a,25-triol-3,24-dione, an inter-
mediate in the formation of bile acids from C°-3p,25-diol [15], is an
isomer of CA*70,12a-diol-3-one and may contribute some ion-
current to the peaks assigned to (25R)CA*-7¢,12¢-diol-3-one.
However, C-25 is not asymmetric in C*-7a,120,25-triol-3,24-dione
(Supplemental Fig. 6) and will not give epimers at C-25 and
cannot account for the peaks assigned to the (25 S)CA*-7¢,12a-diol-
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Fig. 7. MS® ([M]* —[M-Py|* -, i.e. 585.4—501.3—) spectra from CSF of a CTX patient. The spectra confirm the presence of dihydroxy-3-oxocholest-4-en-26-oic acids in CSF.
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0.1 for most fragment-ions.

3-one. Though at significantly lower level than in normal CSF, (25R)
CA*-70,120-diol-3-one was detected in CSF from CTX patients
despite CYP27A1 deficiency. Notably, C*-7¢,12a-diol-3-one is also
elevated in CSF of CTX patients (data not shown) and could provide
a substrate for carboxylation at C-26.

Despite generating the MRM chromatogram
585.4—501.3 —455.3 to highlight CA%-7¢,25-diol-3-one there was
no evidence for this acid in CSF from CTX patients (Fig. 6D). The
most abundant dihydroxy-3-oxocholest-4-en-26-oic acids in hu-
man CSF, CA*-7a,x-diol-3-one and (Fig. 3C) was not detected in CSF
from CTX patients (Fig. 6E).

3.3. Dihydroxy-3-oxocholest-4-en-26-oic acids in CSF from SPG5
patients

Oxysterol 7a-hydroxylase (CYP7B1) catalyses the 7a-hydroxyl-
ation of most oxysterols [1,19,20]. Deficiency in this enzyme, as
observed in patients suffering from SPG5, leads to elevated levels of
C3-3f,25-diol, (25 R)26-hydroxycholesterol (C>-3p,26-diol) and
CA>-3B-ol and reduced levels of 7a,25-dihydroxycholesterol (C>-
3p,7a,25-triol), 7a,(25 R)26-dihydroxycholesterol  (C°-3p,70,26-
triol) and CA°-3B,7a-diol, and their 3-oxo-4-ene equivalents in
CSF [5,9]. Thus, dihydroxy-3-oxocholest-4-en-26-oic acids con-
taining a 7a-hydroxy group are predicted to be reduced in CSF from
SPG5 patients in comparison to healthy controls.

3.3.1. CA*-7a,24-diol-3-one, CA*-7a,25-diol-3-one, CA*-7a,12a-
diol-3-one and CA*-7u,x-diol-3-one

In 2014 we analysed CSF from SPG5 patients [9], but in the
absence of authentic standards of CA*-7¢,24-diol-3-one or CA*-
70,25-diol-3-one misidentified the former metabolite. Reassess-
ment of our earlier data [9], now with access to authentic stan-
dards, allows definitive identification of CA%-7a,24-diol-3-one at a
concentration of 0.1 +0.1 ng/mL and of CA*70,25-diol-3-one at
0.2 +0.3 ng/mL (n=3) (Table 1).

Although authentic standards are still not available for CA%-
7a,120-diol-3-one, based on fragmentation data discussed above,
we identify (25 R)CA*-7a,12a-diol-3-one in SPG5 CSF at a concen-
tration of 0.6 + 0.2 ng/mL and CA*-7a,x-diol-3-one at 0.6 + 0.7 ng/
mL, these values are considerably lower than the values for control
CSF measured in this study (see Table 1). As in the case of control
CSF, the concentrations of trihydroxycholest-5-en-26-oic acids
were at most 20% of the analogous dihydroxycholest-4-en-26-oic
acids (Supplemental Figs. 7A and B).

3.4. Dihydroxy-3-oxocholest-4-en-26-oic acids in control plasma

Control plasma (n = 24) was from a previously published study
[10] and data from that study for dihydroxy-3-oxocholest-4-en-
26-oic acids was compared to new data for CTX and SPG5 patients.
CTX (n=13) and SPG5 (n=2) plasma was analysed in separate
batches on different days to avoid cross contamination from
abundant metabolites. However, in each sequence a QC sample
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was included in order to calibrate retention times to those in
control plasma.

3.4.1. CA*-7w,24-diol-3-one

In plasma collected from healthy controls (n = 24), CA*70,24-
diol-3-one was reported to be present at a concentration of
0.05 + 0.04 ng/mL (Table 2, Fig. 8A) [10]. CA*-7a,24-diol-3-one was
more abundant than its 3p-hydroxy-5-ene analogue, CA°-3p,70,24-
triol, by about 10-fold. Although present at low levels in plasma
(Fig. 8A and B), the identification of CA*-70,24-diol-3-one was
confirmed by an acquisition of an MS> spectrum at 1.74 min as
shown Supplemental Fig. 8A.

3.4.2. CA*-7a,25-diol-3-one

CA*-7a,25-diol-3-one was determined to be the second most
abundant dihydroxy-3-oxocholest-4-en-26-oic acid in CSF, but was
only detected at trace levels in plasma (<0.05 ng/mL).

3.4.3. CA*-7ax-diol-3-one

The LC-HRMS RIC for the [M]' ion at m/z 585.4059 revealed
peaks at 2.26 and 3.20 min assigned to the syn and anti conformers
of CA%-7a,x-diol-3-one (Fig. 8A). The identification was confirmed
by acquisition of MS> spectra (Supplemental Figs. 8B and C).
Fragment-ions at m/z 151.1, 179.1 and 231.1 characteristic of the 7-
hydroxy-3-oxo-4-ene structure were evident. In the high m/z
range fragment ions at m/z 419.3, 440.3 and 447.3 were observed as
in the spectra recorded in CSF and annotated as CA*-7a,x-diol-3-
one (Fig. 4E). In control plasma, CA*-7a,x-diol-3-one was deter-
mined to be present at a concentration of 0.92 + 0.30 ng/mL
(Table 2), more than ten-fold greater than the 3p-hydroxy-5-ene
analogue, CA%-3f,7a,x-triol [10].

3.4.4. CA*-7a,12a-diol-3-one

(25 R)CA*-70,12a-diol-3-one is the most abundant dihydroxy-3-
oxocholest-4-en-26-oic acid in plasma [10]. Syn and anti con-
formers of the 25R-epimer were assigned to peaks at 3.70 and
4.25 min in the LC-HRMS RIC (Fig. 8A). MS? spectra recorded at 3.70
and 4.28 min confirmed these identifications (Supplemental
Figs. 8D and E). Fragment-ions at m/z 151.1, 179.1, 209.1 and
279.2 m/z were observed, as in the spectra assigned to CA*-70,120-
diol-3-one in CSF (Fig. 4F). In the high m/z range the fragment-ion
at m/z 422.3 was present which also agrees with the spectrum
recorded for CA*-7¢,12a-diol-3-one in CSF. Plasma concentrations
of 1.56 + 1.24 ng/mL were determined for CA*-7¢,12¢-diol-3-one in
control samples (Table 2), the 3B-hydroxy-5-ene analogue was at
least ten-fold less abundant. There was no evidence for the 25 S-
epimer in the control plasma samples analysed.

3.5. Dihydroxy-3-oxocholest-4-en-26-oic acids in plasma from CTX
patients

Plasma was analysed from 13 CTX patients.

3.5.1. CA*-7a,24-diol-3-one, CA*-7a,25-diol-3-one and CA*-7a,x-
diol-3-one

CA*-70,24-diol-3-one was detected in CTX plasma at about the
limit of detection of the method (0.05 ng/mL) in 11 of the 13 sam-
ples analysed, in one other it was absent but was present at 0.35 ng/
mL in the other sample (Table 2). There was little evidence for the
presence of CA*-74,25-diol-3-one or CA*-7a,x-diol-3-one in plasma
from CTX patients. The absence of the two acids in plasma from CTX
patients agrees with the inability to detect these dihydroxy-3-
oxocholest-4-en-26-oic acids in CSF from CTX patients.

3.5.2. CA*-7a,12a-diol-3-one

The RIC for m/z 585.4059 (Fig. 8C) gave two peaks at 4.15 and
4.68 min and the MRM chromatogram of 585.4—501.3 —>422.3
(Supplemental Fig. 9) at 4.10 and 4.70 min which are assigned to
(25 R)CA*-70,12a-diol-3-one based on comparison of retention
time to a QC sample run in the same sample batch. The mean
concentration of (25R)CA%7¢,12a-diol-3-one in CTX plasma
(0.29 + 0.43 ng/mL) was significantly lower than in healthy controls
(1.56 + 1.24 p < 0.01, Table 2), and of the 13 CTX samples analysed
the acid was only identified in 8 samples. In 7 samples there was a
suggestion of the presence of the (25 S)-epimer but only at trace
levels (0.08 + 0.12 ng/mL).

3.6. Dihydroxy-3-oxocholest-4-en-26-oic acids in plasma from
SPG5 patients

As was the case with CSF, plasma from SPG5 patients was ana-
lysed for dihydroxy-3-oxocholest-4-en-26-oic acids in a study
performed by us in 2014 [9], but in the absence of authentic stan-
dards. In the current study we have analysed plasma from a further
two patient samples.

3.6.1. CA*-7a,24-diol-3-one and CA*-7a,25-diol-3-one

A peak corresponding to CA%-7a,24-diol-3-one was observed at
1.85 min in the LC-HRMS RIC for m/z 585.4059 (Fig. 8D) and at
1.82min the MRM chromatogram 585.4—501.3—427.3
(Supplemental Fig. 10A) from analysis of SPG5 plasma, the retention
time being almost identical to that recorded for CA*-70,24-diol-3-
one in a QC plasma sample run within in the same batch of sam-
ples (Supplemental Fig. 10B). The plasma levels of CA*-70,24-diol-
3-one in the two SPG5 patients analysed here were 0.15 and
0.23 ng/mL, somewhat higher than levels seen in healthy controls
(0.05 + 0.04 ng/mL, Table 2). There was no convincing evidence for
the presence of CA*-74,25-diol-3-one in SPG5 plasma.

Table 2
Concentrations of dihydroxy-3-oxocholest-4-en-26-oic acids in plasma.
Compound Control plasma’', n =24 CTX plasma, n=13 SPG5 plasma
Mean Median SD Mean Median SD Significance? P1 P2
ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL CTX v Control ng/mL ng/mL
CA*-70,24-diol-3-one 0.05 0.04 0.04 0.15 0.06 0.19 P>0.05 0.23 0.15
CA*-70,x-diol-3-one 0.92 0.89 030 ND ND NA P <0.01 033 0.20
CA*-70,25-diol-3-one ND ND NA ND ND NA NA ND ND
(25 R)CA*-7a,12a-diol-3-one 1.56 1.38 1.24 0.29 0.03 0.43 P<0.01 1.91 0.78
(25 S)CA*-70,12a-diol-3-one ND ND NA 0.08 0.03 0.12 P <0.01 ND ND

Quantification was made utilising LC-HRMS RICs with [2H,]22 R-hydroxycholest-4-en-3-one as the internal standard.

1.Data from Abdel-Khalik et al. [10].
2.Mann-Whitney test.
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Fig. 8. LC-HRMS RICs +10 ppm appropriate to the analysis of [?Hs]GP and [*Ho]GP
derivatised dihydroxy-3-oxocholest-4-en-26-oic acids in control (A), CTX (C) and SPG5
(D) plasma. The RICs for [2H5]GP derivatised dihydroxy-3-oxocholest-4-en-26-oic acids
are plotted on the same y-axis scale as the RICs for [*Ho]GP derivatised acids. (B) LC-
MS3 TICs appropriate to [?Hs]GP and [Ho|GP derivatised dihydroxy-3-oxocholest-4-
en-26-oic acids in control plasma. Control, CTX and SPG5 plasma were analysed on
different days which causes a small deviation in retention time. Peaks were correlated
by recording QCs with each sample batch. HRMS data was recorded in the Orbitrap and
MS? data in the LIT of the Orbitrap Elite hybrid instrument. Peaks are colour coded as in
Fig. 3.

3.6.2. CA*-7a,12a-diol-3-one

The LC-HRMS RIC for m/z 585.4059 (Fig. 8D) and MRM chro-
matogram 585.4—501.3 —422.3 (Supplemental Fig. 10D) revealed
two peaks at 3.92 and 4.50 min assigned to the syn and anti con-
formers of (25R)CA*70,12a-diol-3-one. The concentrations of
(25 R)CA*-70,120-diol-3-one in the two SPG5 patients (1.91 and
0.78 ng/mL) were at similar levels to healthy controls, i.e.
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1.56 + 1.24 ng/mL (Table 2). No (25 S)CA*-70,12a-diol-3-one was
detected.

3.63. CA*-7ax-diol-3-one

In the LC-HRMS RIC for m/z 585.4059 (Fig. 8D) and the MRM
chromatogram 585.4—501.3—447.3 (Supplemental Fig. 10C) a
peak at 240min is evident which gives an MS> spectrum
(Supplemental Fig. 8F) similar to that assigned to CA*-7a,x-diol-3-
one in CSF (Fig. 4E) and control plasma (Supplemental Fig. 8B). In
the low m/z range of the MS? spectrum acquired from the SPG5
patient, fragment-ions at m/z 151.1, 179.1 and 231.1 were detected
while fragment ions m/z 419.3, 440.3 and 447.3 were detected in
the high m/z range. CA*-7a,x-diol-3-one was determined to be
present in plasma from SPG5 patients at concentrations of 0.33 and
0.2 ng/mL, lower than observed in any of the 24 healthy controls
(range 0.4—1.33 ng/ml, mean + SD 0.92 + 0.30).

4. Discussion

Dihydroxy-3-oxocholest-4-en-26-oic acids are present in hu-
man CSF and plasma [3,9,10]. These consist of CA*-7a,24-diol-3-
one, CA*-7¢,25-diol-3-one, CA*-7¢,120-diol-3-one and a fourth
acid CA*-70,x-diol-3-one where the location of the second hydroxy
group is probably on the Cy7 side-chain. The concentrations of these
dihydroxy-3-oxocholest-4-en-26-oic acids in CSF follow the order
CA*-70,x-diol-3-one > CA*-70,25-diol-3-one > (25 R)CA*-70,120-
diol-3-one > CA*-7a,24-diol-3-one (Table 1). In plasma from
healthy controls the order is (25 R)CA*7a,120-diol-3-one > CA*-
7a,x-diol-3-one > CA*-74,24-diol-3-one (Table 2) [10]. It is note-
worthy that the concentrations of CA*-7¢,24-diol-3-one, CA*-
74,25-diol-3-one and CA*-7a,x-diol-3-one are higher in CSF than
plasma, suggesting that they are formed, at least in part, in the
central nervous system (CNS). CA*-70,24-diol-3-one could be
formed via two different pathways, (i) via the acidic pathway of bile
acid biosynthesis as depicted in Fig. 1A or (ii) via a pathway starting
with 24 S-hydroxylation of cholesterol by CYP46A1 (Fig. 1B) [21]. In
fact, all of the enzymes, or their transcripts [3], including AMACR
[22], required by the acidic pathway for biosynthesis of CA%-7¢,24-
diol-3-one are expressed in brain. The latter steps of the acidic
pathway leading to the formation the diastereomers (25 R)CA*-
70,24 S-diol-3-one, (25 R)CA%-7a,24 R-diol-3-one, (25 S)CA*-
70,24 S-diol-3-one and (25 S)CA*-70,24 R-diol-3-one are shown in
Fig. 1C [23]. The arm of the pathway catalysed by D-bifunctional
protein (DBP) is dominant in the liver leading to the formation of
the (25 R)CA*-71,24 R-diol-3-one [2], however, the relative impor-
tance of this and the other arm catalysed by L-bifunctional protein
(LBP) leading to (25 S)CA*-7¢,24 S-diol-3-one or (25 R)CA*-70,24 S-
diol-3-one in the CNS is not known. Alternatively, a pathway
starting with 24 S-hydroxylation of cholesterol by CYP46A1, which
is highly expressed in brain [1], can lead to the biosynthesis of both
(25 R)CA*-70,24 S-diol-3-one and also (25 S)CA*-7¢,24 S-diol-3-
one (Fig. 1B). The second step in this pathway, 7a-hydroxylation
of 24S-hydroxycholesterol (C>-3f,24 S-diol), is catalysed by
CYP39A1, which is only weakly expressed in brain [22]. However,
another route could be via (25 R)26-hydroxylation by CYP27A1 or
CYP46A1 [24] and subsequent (25 R)26-carboxylation (Fig. 1B),
before or after 7a-hydroxylation via CYP7B1, which is itself is highly
expressed in brain [20]. C°-3pB,24 S-diol is a known substrate of
CYP27A1 [25]. Still yet another route for the formation of CA*-
70,24 S-diol-3-one could start with 24 S-hydroxylation of 7a-
hydroxycholesterol (C°-3p,7a-diol) by CYP46A1 [24]. C°-3p,7a-diol
is not synthesised in brain but may be imported from the periphery.

In the absence of additional authentic standards we cannot be
sure of the structure of CA*-7a,x-diol-3-one, but the MS> frag-
mentation pattern suggests that the second hydroxy group is
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located on C-22 or C-23. CYP3A4 has 23 R-hydroxylase activity [26],
and is expressed in human brain [27].

Surprisingly, in both CSF and plasma from CTX patients CA*-
7a,24-diol-3-one and CA*-70,12a-diol-3-one were detected, the
latter acid as both 25S and 25 R-epimers. Shown in Fig. 1B is a
potential pathway for the formation of CA%-7¢,12a-diol-3-one in
the absence of CYP27A1. CYP3A4 has been shown to have (25 S)26-
hydroxylase activity [26] and we speculate that the primary alcohol
formed could be oxidised further to a carboxylic acid by this
enzyme. In studies with recombinant human enzyme we have
confirmed that CYP3A4 has (25 S)26-hydroxylase activity towards
C>-3B,7a-diol (unpublished data). Mast et al. noted that recombi-
nant CYP46A1 could further hydroxylate C°-3p,24 S-diol to 24 S,26-
dihydroxycholesterol (C>-3B,24 S,26-triol) [24], we speculate that
the enzyme may also oxidise C-26 to a carboxylic acid, which could
be metabolised further to 25 R- and 25 S-epimers of CA*-70,24 S-
diol-3-one (Fig. 1B). CA*-7a,x-diol-3-one could not be detected in
CSF or plasma from CTX patients.

Analysis of CSF (Table 1) and plasma (Table 2) from SPG5 pa-
tients revealed that CA*-7¢,24-diol-3-one, CA*-7¢,25-diol-3-one,
(25 R)CA*-70,12a-diol-3-one and CA*-7a,x-diol-3-one are formed
even in the absence of CYP7B1 activity, with 7a-hydroxylation
presumably being catalysed by CYP39A1 or CYP7A1 [28,29]. In CSF,
the concentrations of each of the four acids is reduced in SPG5
patients, although not to statistical significance in the case of (25 R)
CA*-70,120-diol-3-one, indicating that CYP7B1 has a role in their
biosynthesis. In contrast to control samples where the concentra-
tions of CA*-70,24-diol-3-one, CA*-70,25-diol-3-one and CA*-7a,x-
diol-3-one are higher in CSF than plasma, the concentration of CA*-
7a,24-diol-3-one is higher in SPG5 plasma than CSF. This suggests
that CYP7B1 is important for the biosynthesis of CA*-7a,24-diol-3-
one in brain.

The biological relevance of the dihydroxy-3-oxocholest-4-en-
26-oic acids identified in this work is unknown. While cholestenoic
acids with a 3B-hydroxy-5-ene structure are ligands to LXRs, sterols
with a 3-oxo0-4-ene group do not appear to activate these receptors.

Although we have only limited clinical data for the CTX and
SPG5 patients studied in this work the levels of the dihydroxy-3-
oxocholest-4-en-26-oic acids determined in CSF do provide
confirmatory diagnostic biomarkers of the two diseases. Whether
or not the levels of these acids provide an indication of the severity
of disease requires further study.
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