449 research outputs found

    MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples

    Full text link
    Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm that boosts multi-modal fine-tuning by fully leveraging the promising ICL capability of multi-modal LLMs (MM-LLMs). We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives. Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features. Moreover, leveraging the flexibility of M-Hub, we design a variety of in-context demonstrations. Extensive experiments on a diverse range of downstream multi-modal tasks demonstrate that MMICT significantly outperforms traditional fine-tuning strategy and the vanilla ICT method that directly takes the concatenation of all information from different modalities as input

    Mesenchymal stem cells-derived exosomal miR-653-5p suppresses laryngeal papilloma progression by inhibiting BZW2

    Get PDF
    Objectives: Although miR-653-5p has been validated to participate in the progression of multiple types of cancer, the functional role of exosomal miR-653-5p derived from Mesenchymal Stem Cells (MSCs) in Laryngeal Papilloma (LP) has still remained elusive. Hence, this study aimed to investigate the role of MSCs-derived exosomal miR-653-5p in LP. Methods: LP tissues (n = 15) and adjacent normal tissues (n = 10) were collected to examine the expression level of miR-653-5p. The expression level of miR-653-5p in LP cells and normal cells was also detected. Then, miR-653-5p was overexpressed or silenced to explore its effects on the proliferation, migration, invasion, and apoptosis of LP cells. Thereafter, the effects of exosomal miR-653-5p derived from MSCs on LP cell progression and the potential regulatory mechanism of miR-653-5p were assessed. Results: It was revealed that the expression level of miR-653-5p was downregulated in LP tissues and cells. In addition, miR-653-5p suppressed the proliferation, migration, invasion, and apoptosis of LP cells. Exosomes derived from MSCs played a suppressive role in LP development and mediated the transmission of miR-653-5p to LP cells. Further exploration identified Basic leucine Zipper and W2 domains 2 (BZW2) as the target of miR-653-5p. More importantly, the rescue experiments revealed that MSCs-secreted exosomal miR-653-5p efficiently inhibited the aggressive phenotypes of LP cells, which could be significantly reversed by BZW2 overexpression in LP cells. Conclusion: MSCs-derived exosomal miR-653-5p exerted inhibitory effects on LP progression through targeting BZW2, which provided a novel idea for the therapy of LP. Clinical Trial registration number: chictr-ior-17011021

    Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress

    Get PDF
    Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress

    MISSRec: Pre-training and Transferring Multi-modal Interest-aware Sequence Representation for Recommendation

    Full text link
    The goal of sequential recommendation (SR) is to predict a user's potential interested items based on her/his historical interaction sequences. Most existing sequential recommenders are developed based on ID features, which, despite their widespread use, often underperform with sparse IDs and struggle with the cold-start problem. Besides, inconsistent ID mappings hinder the model's transferability, isolating similar recommendation domains that could have been co-optimized. This paper aims to address these issues by exploring the potential of multi-modal information in learning robust and generalizable sequence representations. We propose MISSRec, a multi-modal pre-training and transfer learning framework for SR. On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal synergy while a novel interest-aware decoder is developed to grasp item-modality-interest relations for better sequence representation. On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation, providing more precise matching between users and items. We pre-train the model with contrastive learning objectives and fine-tune it in an efficient manner. Extensive experiments demonstrate the effectiveness and flexibility of MISSRec, promising an practical solution for real-world recommendation scenarios.Comment: Accepted to ACM MM 202

    Effect of simulating parity-odd observables in high energy heavy ion collisions on Balance Functions of charged particles and elliptic flow of pions

    Full text link
    At the early stage of heavy ion collisions, non-trivial topologies of the gauge fields can be created resulting in an imbalance of axial charge density and eventually separation of electric charges along the direction of the magnetic field produced in such collisions. This process is called the chiral magnetic effect (CME). In this work we implement such a charge separation at the partonic level in AMPT for Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV to study its consequence on experimental observables. We present the effects on the pion elliptic flow (v2v_2) and the charged particle balance function (BF) for varying strengths of initial charge separation. We find that the shape of the balance function is sensitive to the increasing charge separation. v2v_2 of pion shows a strong decreasing trend at higher transverse momenta (pTp_T) with increasing charge separation. Charge balance functions show a peak at Δϕ∼180\Delta\phi \sim 180 with charge separation implemented in the partonic level as expected for the parity violation. We have also calculated parity observable γ\gamma in the form of BF's moments. γ\gamma shows a decreasing trend with charge separation. It has a negative value for charge separation produced by flipping more than 30 %\% of quarks in the parton level. We also notice that <γ><\gamma> for the same charge correlation and the opposite charge correlation shows negative and positive values, respectively

    Unusually stronger quantum fluctuation with larger spins: Novel phenomena revealed by emergent magnetism in pressurized high-temperature superconductor FeSe

    Full text link
    A counter-intuitive enhancement of quantum fluctuation with larger spins, together with a few novel physical phenomena, is discovered in studying the recently observed emergent magnetism in high-temperature superconductor FeSe under pressure. Starting with experimental crystalline structure from our high-pressure X-ray refinement, we analyze theoretically the stability of the magnetically ordered state with a realistic spin-fermion model. We find surprisingly that in comparison with the magnetically ordered Fe-pnictides, the larger spins in FeSe suffer even stronger long-range quantum fluctuation that diminishes their ordering at ambient pressure. This "fail-to-order" quantum spin liquid state then develops into an ordered state above 1GPa due to weakened fluctuation accompanying the reduction of anion height and carrier density. The ordering further benefits from the ferro-orbital order and shows the observed enhancement around 1GPa. We further clarify the controversial nature of magnetism and its interplay with nematicity in FeSe in the same unified picture for all Fe-based superconductors. In addition, the versatile itinerant carriers produce interesting correlated metal behavior in a large region of phase space. Our study establishes a generic exceptional paradigm of stronger quantum fluctuation with larger spins that complements the standard knowledge of insulating magnetism.Comment: 7 pages, 4 figure
    • …
    corecore