51 research outputs found

    Effect of Non-thermal Plasma on Physicochemical Properties of Nam Dok Mai Mango

    Get PDF
    Mango is considered as a popular and economically important tropical fruit around the world because of its attractive color, favorable flavor, and high nutritional quality. Nowadays, more consumers consciously desire not only fresh and nutritious but also safe fruits with low or free of microorganisms and chemical contamination. Non-thermal plasma (NTP) is one of the emerging technologies that could potentially decontaminate the fresh food and food processing surfaces. Recently, NTP emerges as a new sanitizing method in the agro-industrial application, where the qualitative characteristics of the treated product could probably be modified by the reactive species as well as the residues of oxidation processes. This study evaluates the changes of physicochemical indexes of Nam Dok Mai mango treated with several NTP conditions. The NTP process was discharged in 0.05 % sodium bicarbonate solution under different voltage levels (800-1500 V) and various treatment durations (2-10 min). It was found that there were significant decreases (p<0.05) in titratable acidity and total phenolic content of NTP treated mango, while the total soluble solid showed a significant increase (p<0.05). The color and texture parameters of this fruit with NTP treatments were not significantly different (p>0.05). The results demonstrated that NTP had slight effect on the physicochemical properties of mango. Future work is required to investigate more comprehensive effect of NTP on the pesticides residues in the mango

    Application of Pinhole Plasma Jet Activated Water against Escherichia coli, Colletotrichum gloeosporioides, and Decontamination of Pesticide Residues on Chili (Capsicum annuum L.)

    Get PDF
    Plasma activated water (PAW) generated from pinhole plasma jet using gas mixtures of argon (Ar) and 2% oxygen (O2) was evaluated for pesticide degradation and microorganism decontamination (i.e., Escherichia coli and Colletotrichum gloeosporioides) in chili (Capsicum annuum L.). A flow rate of 10 L/min produced the highest concentration of hydrogen peroxide (H2O2) at 369 mg/L. Results showed that PAW treatment for 30 min and 60 min effectively degrades carbendazim and chlorpyrifos by about 57% and 54% in solution, respectively. In chili, carbendazim and chlorpyrifos were also decreased, to a major extent, by 80% and 65% after PAW treatment for 30 min and 60 min, respectively. E. coli populations were reduced by 1.18 Log CFU/mL and 2.8 Log CFU/g with PAW treatment for 60 min in suspension and chili, respectively. Moreover, 100% of inhibition of fungal spore germination was achieved with PAW treatment. Additionally, PAW treatment demonstrated significantly higher efficiency (p < 0.05) in controlling Anthracnose in chili by about 83% compared to other treatments

    Wound healing effect of supercritical carbon dioxide Datura metel l. leaves extracts : an in vitro study of anti-inflammation, cell migration, MMP-2 inhibition, and the modulation of the sonic hedgehog pathway in human fibroblasts

    Get PDF
    Datura metel L. (thorn apple) has been used in Thai folk wisdom for wound care. In this study, we chose supercritical carbon dioxide extraction (scCO2) to develop crude extraction from the leaves of the thorn apple. The phytochemical profiles were observed using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). The biological activities of D. metel were performed through antioxidant assays, anti-inflammation based on the Griess reaction, the migration assay, the expression of matrix metalloproteinase-2 (MMP-2), and regulatory genes in fibroblasts. Dm1 and Dm2 extracts were obtained from scCO2 procedures at different pressures of 300 and 500 bar, respectively. Bioactive compounds, including farnesyl acetone, schisanhenol B, and loliolide, were identified in both extracts. The antioxidant properties of both D. metel extracts were comparable to those of l-ascorbic acid in hydrogen peroxide-induced fibroblasts with no significant difference. Additionally, Dm1 and Dm2 significantly inhibited the nitrite production levels of 1.23 ± 0.19 and 1.52 ± 0.05 μM, respectively, against the lipopolysaccharide-treated group (3.82 ± 0.39 μM). Interestingly, Dm1 obviously demonstrated the percentage of wound closure with 58.46 ± 7.61 and 82.62 ± 6.66% after 36 and 48 h of treatment, which were comparable to the commercial deproteinized dialysate from the calf blood extract. Moreover, both extracts were comparable to l-ascorbic acid treatment in their ability to suppress the expression of MMP-2: an enzyme that breaks down collagen. The gene expressions of SHH, SMO, and GLI1 that control the sonic hedgehog pathway were also clearly upregulated by Dm1. Consequently, the scCO2 technique could be applied in D. metel extraction and contribute to potentially effective wound closure

    Influence of Geographical Location of Spirulina (Arthrospira platensis) on the Recovery of Bioactive Compounds Assisted by Pulsed Electric Fields

    Get PDF
    Spirulina (Arthrospira platensis) has been consumed by humans since ancient times. It is rich in high added-value compounds such as chlorophylls, carotenoids and polyphenols. Pulsed electric fields (PEF) is an innovative non-thermal technique that improves the extraction of bioactive compounds from diverse sources. PEF pre-treatment (3 kV/cm, 100 kJ/kg) combined with supplementary extraction with binary solvents at different times was evaluated to obtain the optimal conditions for extraction. In addition, the results obtained were compared with conventional treatment (without PEF pre-treatment and constant shaking) and different strains of Spirulina from diverse geographical locations. The optimal extraction conditions for recovering the bioactive compounds were obtained after applying PEF treatment combined with the binary mixture EtOH/H2O for 180 min. The recovery of total phenolic content (TPC) (19.76 ± 0.50 mg/g DM (dry matter) and carotenoids (0.50 ± 0.01 mg/g DM) was more efficient in the Spirulina from Spain. On the other hand, there was a higher recovery of chlorophylls in the Spirulina from China. The highest extraction of total antioxidant compounds was in Spirulina from Costa Rica. These results show that PEF, solvents and the condition of growing affect the extraction of antioxidant bioactive compounds from Spirulina. The combination of PEF and EtOH/H2O is a promising technology due to its environmental sustainability

    Artificial Intelligence : Implications for the Agri-Food Sector

    Get PDF
    Artificial intelligence (AI) involves the development of algorithms and computational models that enable machines to process and analyze large amounts of data, identify patterns and relationships, and make predictions or decisions based on that analysis. AI has become increasingly pervasive across a wide range of industries and sectors, with healthcare, finance, transportation, manufacturing, retail, education, and agriculture are a few examples to mention. As AI technology continues to advance, it is expected to have an even greater impact on industries in the future. For instance, AI is being increasingly used in the agri-food sector to improve productivity, efficiency, and sustainability. It has the potential to revolutionize the agri-food sector in several ways, including but not limited to precision agriculture, crop monitoring, predictive analytics, supply chain optimization, food processing, quality control, personalized nutrition, and food safety. This review emphasizes how recent developments in AI technology have transformed the agri-food sector by improving efficiency, reducing waste, and enhancing food safety and quality, providing particular examples. Furthermore, the challenges, limitations, and future prospects of AI in the field of food and agriculture are summarized

    Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide

    Get PDF
    This research aimed to optimize pressure (10-20 MPa) and temperature (45-60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and antimicrobial activities of the extracts, were assessed and optimized using a central composite design. The optimal SFE conditions were found to be 20 MPa at 60 °C, which resulted in the highest yield (19%) and a total phenolic compound content of 31.54 mg GAE/mL extract. IC50 values for DPPH and ABTS assays were determined to be 26.06 and 19.90 μg/mL extract, respectively. Overall, the ME obtained through SFE exhibited significantly better physicochemical and antioxidant properties compared to ME obtained through hydro-distillation extraction. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that beta-pinene was the major component in the ME obtained through SFE (23.10%), followed by d-limonene, alpha-pinene, and terpinen-4-ol at concentrations of 16.08, 7.47, and 6.34%, respectively. On the other hand, the hydro-distillation-extracted ME showed stronger antimicrobial properties than the SFE-extracted ME. These findings suggest that both SFE and hydro-distillation have the potential for extracting Makwaen pepper, depending on the intended purpose of use

    Natural ingredients and probiotics for lowering cholesterol and saturated fat in dairy products: an updated review

    Get PDF
    Dairy products play a crucial role in ensuring healthy lives and promoting the well-being of people. However, they normally contain high levels of saturated fat and cholesterol which are related to the risk of noncommunicable diseases and other health issues. Our review focuses on the effectiveness of added natural ingredients and probi-otics in dairy products for replacing or lowering cholesterol and saturated fat. This narrative review was concep-tualized to describe: (i) natural ingredients for cholesterol and saturated fat substitution, and (ii) probiotics for lowering both cholesterol and saturated fat. Promising techniques for cholesterol and saturated fat replacement by healthy plant oils, carbohydrate, and protein co-products and their effect on product qualities are discussed. In addition, various probiotics inoculated in dairy products exhibiting effect on saturated fat and cholesterol are also addressed

    The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses

    Get PDF
    Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are wellknown to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection

    Reaction mechanism and mechanical property improvement of Poly(Lactic Acid) reactive blending with Epoxy Resin

    Get PDF
    Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that presented a smooth fracture surface with a high epoxy content. The glass transition temperature of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA and the epoxy resin. The Vicat softening temperature of the PLA was 59 °C and increased to 64.6 °C for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends

    Pretreatment and enzymatic hydrolysis optimization of lignocellulosic biomass for ethanol, xylitol, and phenylacetylcarbinol co-production using Candida magnoliae

    Get PDF
    Cellulosic bioethanol production generally has a higher operating cost due to relatively expensive pretreatment strategies and low efficiency of enzymatic hydrolysis. The production of other high-value chemicals such as xylitol and phenylacetylcarbinol (PAC) is, thus, necessary to offset the cost and promote economic viability. The optimal conditions of diluted sulfuric acid pretreatment under boiling water at 95°C and subsequent enzymatic hydrolysis steps for sugarcane bagasse (SCB), rice straw (RS), and corn cob (CC) were optimized using the response surface methodology via a central composite design to simplify the process on the large-scale production. The optimal pretreatment conditions (diluted sulfuric acid concentration (% w/v), treatment time (min)) for SCB (3.36, 113), RS (3.77, 109), and CC (3.89, 112) and the optimal enzymatic hydrolysis conditions (pretreated solid concentration (% w/v), hydrolysis time (h)) for SCB (12.1, 93), RS (10.9, 61), and CC (12.0, 90) were achieved. CC xylose-rich and CC glucose-rich hydrolysates obtained from the respective optimal condition of pretreatment and enzymatic hydrolysis steps were used for xylitol and ethanol production. The statistically significant highest (p ≤ 0.05) xylitol and ethanol yields were 65% ± 1% and 86% ± 2% using Candida magnoliae TISTR 5664. C. magnoliae could statistically significantly degrade (p ≤ 0.05) the inhibitors previously formed during the pretreatment step, including up to 97% w/w hydroxymethylfurfural, 76% w/w furfural, and completely degraded acetic acid during the xylitol production. This study was the first report using the mixed whole cells harvested from xylitol and ethanol production as a biocatalyst in PAC biotransformation under a two-phase emulsion system (vegetable oil/1 M phosphate (Pi) buffer). PAC concentration could be improved by 2-fold compared to a single-phase emulsion system using only 1 M Pi buffer
    • …
    corecore