21 research outputs found

    A systems biology approach to the human hair cycle

    Get PDF
    The hair cycle represents a dynamic process during which a complex mini- organ, the hair follicle, rhythmically regresses and regenerates. The control mechanism that governs the hair cycle ('hair cycle clock') is thought to be an autonomous oscillator system, however, its exact nature is not known. This thesis aims to understand the human hair cycle as a systems biology problem using theoretical and experimental techniques in three distinct study approaches. Using mathematical modelling, a simple two-compartment model of the human hair cycle was developed. The model concentrates on the growth control of matrix keratinocytes, a key cell population responsible for hair growth, and bi-directional communication between these cells and the inductive fibroblasts of the dermal papilla. A bistable switch and feedback inhibition produces key characteristics of human hair cycle dynamics. This study represents the first mathematically formulated theory of the 'hair cycle clock'.A second chronobiological approach was adopted to explore the molecular control of the human hair follicle by a peripheral clock mechanism. The hypothesis was tested that selected circadian clock genes regulate the human hair cycle, namely the clinically crucial follicle transformation from organ growth (anagen) to organ regression (catagen). This revealed that intra- follicular expression of core clock and clock-controlled genes display a circadian rhythm and is hair cycle-dependent. Knock-down of Period1 and Clock promotes anagen maintenance, hair matrix keratinocyte proliferation and stimulates hair follicle pigmentation. This provides the first evidence that peripheral Period1 and Clock gene activity is a component of the human 'hair cycle clock' mechanism. Lastly, an unbiased gene expression profiling approach was adopted to establish important genes and signalling pathways that regulate the human hair cycle. This revealed that similar genes and pathways previously shown to control the murine hair cycle in vivo, such as Sgk3, Msx2 and the BMP pathway, are also differentially regulated during the anagen-catagen transformation of human hair follicles. In summary, by using a three-pronged systems biology approach, the thesis has shed new light on the control of human hair follicle cycling and has generated clinically relevant information: a) The hair cycle model may predict how hair cycle modulatory agents alter human hair growth. b) Period1 and Clock are new therapeutic targets for human hair growth manipulation. c) Gene expression profiling points to additional key players in human hair cycle control with potential for future therapeutic targets.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Role of subnetworks mediated by TNF α, IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis

    Get PDF
    Psoriasis is a chronic inflammatory skin disease clinically characterized by the appearance of red colored, well-demarcated plaques with thickened skin and with silvery scales. Recent studies have established the involvement of a complex signalling network of interactions between cytokines, immune cells and skin cells called keratinocytes. Keratinocytes form the cells of the outermost layer of the skin (epidermis). Visible plaques in psoriasis are developed due to the fast proliferation and unusual differentiation of keratinocyte cells. Despite that, the exact mechanism of the appearance of these plaques in the cytokine-immune cell network is not clear. A mathematical model embodying interactions between key immune cells believed to be involved in psoriasis, keratinocytes and relevant cytokines has been developed. The complex network formed of these interactions poses several challenges. Here, we choose to study subnetworks of this complex network and initially focus on interactions involving TNFα, IL-23/IL-17, and IL-15. These are chosen based on known evidence of their therapeutic efficacy. In addition, we explore the role of IL-15 in the pathogenesis of psoriasis and its potential as a future drug target for a novel treatment option. We perform steady state analyses for these subnetworks and demonstrate that the interactions between cells, driven by cytokines could cause the emergence of a psoriasis state (hyper-proliferation of keratinocytes) when levels of TNFα, IL-23/IL-17 or IL-15 are increased. The model results explain and support the clinical potentiality of anti-cytokine treatments. Interestingly, our results suggest different dynamic scenarios underpin the pathogenesis of psoriasis, depending upon the dominant cytokines of subnetworks. We observed that the increase in the level of IL-23/IL-17 and IL-15 could lead to psoriasis via a bistable route, whereas an increase in the level of TNFα would lead to a monotonic and gradual disease progression. Further, we demonstrate how this insight, bistability, could be exploited to improve the current therapies and develop novel treatment strategies for psoriasis

    Modelling and finite time stability analysis of psoriasis pathogenesis

    Get PDF
    A new systems model of psoriasis is presented and analysed from the perspective of control theory. Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various equilibria is undertaken based on singular perturbation theory. Finite time stability and stabilisation has been studied in various engineering applications where the principal paradigm uses non-Lipschitz functions of the states. A comprehensive study of the finite time stability properties of the proposed psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite time convergent to certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite time convergence motivates the development of a modi?ed version of the Michaelis-Menten function, frequently used in biology. This framework is used to model cytokines as fast finite time actuators

    Modernising medical careers and factors influencing career choices of medical students

    No full text
    This article details medical students' views towards future career choices and factors that may influence this choice. The role of gender in career choice and the importance of structured career advice and management is highlighted and discussed. </jats:p

    A prototypic mathematical model of the human hair cycle

    No full text
    The human hair cycle is a complex, dynamic organ-transformation process during which the hair follicle repetitively progresses from a growth phase (anagen) to a rapid apoptosis-driven involution (catagen) and finally a relative quiescent phase (telogen) before returning to anagen. At present no theory satisfactorily explains the origin of the hair cycle rhythm. Based on experimental evidence we propose a prototypic model that focuses on the dynamics of hair matrix keratinocytes. We argue that a plausible feedback-control structure between two key compartments (matrix keratinocytes and dermal papilla) leads to dynamic instabilities in the population dynamics resulting in rhythmic hair growth. The underlying oscillation consists of an autonomous switching between two quasi-steady states. Additional features of the model, namely bistability and excitability, lead to new hypotheses about the impact of interventions on hair growth. We show how in silico testing may facilitate testing of candidate hair growth modulatory agents in human HF organ culture or in clinical trials
    corecore