66 research outputs found

    Conferring the ability to utilize inorganic polyphosphate on ATP-specific NAD kinase

    Get PDF
    ATP特異性の獲得メカニズムの解明 : 新薬と新しい物質生産系の開発に期待. 京都大学プレスリリース. 2013-09-11.NAD kinase (NADK) is a crucial enzyme for production of NADP(+). ATP-specific NADK prefers ATP to inorganic polyphosphate [poly(P)] as a phosphoryl donor, whereas poly(P)/ATP-NADK utilizes both ATP and poly(P), and is employed in industrial mass production of NADP(+). Poly(P)/ATP-NADKs are distributed throughout Gram-positive bacteria and Archaea, whereas ATP-specific NADKs are found in Gram-negative α- and γ-proteobacteria and eukaryotes. In this study, we succeeded in conferring the ability to utilize poly(P) on γ-proteobacterial ATP-specific NADKs through a single amino-acid substitution; the substituted amino-acid residue is therefore important in determining the phosphoryl-donor specificity of γ-proteobacterial NADKs. We also demonstrate that a poly(P)/ATP-NADK created through this method is suitable for the poly(P)-dependent mass production of NADP(+). Moreover, based on our results, we provide insight into the evolution of bacterial NADKs, in particular, how NADKs evolved from poly(P)/ATP-NADKs into ATP-specific NADKs

    Population-genetic nature of copy number variations in the human genome

    Get PDF
    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000–4000 CNVs (4–6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV–SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV–SNP linkage disequilibrium (LD) for 500–900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP–SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs

    P-Glycoprotein in skin contributes to transdermal absorption of topical corticosteroids

    Get PDF
    ATP binding cassette transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed in skin, but their involvement in transdermal absorption of clinically used drugs remains unknown. Here, we examined their role in transdermal absorption of corticosteroids. Skin and plasma concentrations of dexamethasone after dermal application were reduced in P-gp and BCRP triple-knockout (Mdr1a/1b/Bcrp−/−) mice. The skin concentration in Mdr1a/1b/Bcrp−/− mice was reduced in the dermis, but not in the epidermis, indicating that functional expression of these transporters in skin is compartmentalized. Involvement of these transporters in dermal transport of dexamethasone was also supported by the observation of a higher epidermal concentration in Mdr1a/1b/Bcrp−/− than wild-type mice during intravenous infusion. Transdermal absorption after dermal application of prednisolone, but not methylprednisolone or ethinyl estradiol, was also lower in Mdr1a/1b/Bcrp−/− than in wild-type mice. Transport studies in epithelial cell lines transfected with P-gp or BCRP showed that dexamethasone and prednisolone are substrates of P-gp, but are minimally transported by BCRP. Thus, our findings suggest that P-gp is involved in transdermal absorption of at least some corticosteroids in vivo. P-gp might be available as a target for inhibition in order to deliver topically applied drugs and cosmetics in a manner that minimizes systemic exposure. © 2017 Elsevier B.V.Embargo Period 12 month

    Utilization of Liver Microsomes to Estimate Hepatic Intrinsic Clearance of Monoamine Oxidase Substrate Drugs in Humans

    Get PDF
    Purpose: Monoamine oxidases (MAOs) are non-CYP enzymes that contribute to systemic elimination of therapeutic agents, and localized on mitochondrial membranes. The aim of the present study was to validate quantitative estimation of metabolic clearance of MAO substrate drugs using human liver microsomes (HLMs). Methods: Three MAO substrate drugs, sumatriptan, rizatriptan and phenylephrine, as well as four CYP substrates were selected, and their disappearance during incubation with HLMs or mitochondria (HLMt) was measured. Metabolic clearance (CL) was then calculated from the disappearance curve. Results: CL obtained in HLMs for sumatriptan and a typical MAO substrate serotonin was correlated with that obtained in HLMt among ten human individual livers. Hepatic intrinsic clearance (CLint,vitro) estimated from CL in HLMs was 14–20 and 2–5 times lower than in vivo hepatic intrinsic clearance (CLint,vivo) obtained from literature for MAO and CYP substrates, respectively. Utilization of HLMs for quantitatively assessing metabolic clearance of MAO substrates was further validated by proteomics approach which has revealed that numerous proteins localized on inner and outer membranes of mitochondria were detected in both HLMs and HLMt. Conclusion: CLint,vitro values of MAO substrate drugs can be quantitatively estimated with HLMs and could be used for semi-quantitative prediction of CLint,vivo values. © 2017 Springer Science+Business Media New YorkEmbargo Period 12 month

    Involvement of the Transporters P-Glycoprotein and Breast Cancer Resistance Protein in Dermal Distribution of the Multikinase Inhibitor Regorafenib and Its Active Metabolites

    Get PDF
    Regorafenib is a multikinase inhibitor orally administered to colorectal cancer patients, and is known to often exhibit dermal toxicity. The purpose of this study is to clarify possible involvement of P-glycoprotein and breast cancer resistance protein (BCRP) in the dermal accumulation of regorafenib and its active metabolites M-2 and M-5. Following intravenous administration in triple knockout (Abcb1a/1b/bcrp -/-; TKO) and wild-type (WT) mice, delayed plasma clearance of M-2 and M-5, but not regorafenib, was observed in TKO mice compared to WT mice. Elacridar, an inhibitor of both transporters, also caused delayed clearance of M-2 and M-5, suggesting that these transporters are involved in their elimination. Skin-to-plasma concentration ratios of regorafenib, M-2, and M-5 were significantly higher in TKO mice than in WT mice. Elacridar increased skin-to-plasma and epidermis-to-plasma concentration ratios of regorafenib. Basal-to-apical transport of M-2 and M-5 was observed in LLC-PK1-Pgp and MDCKII/BCRP/PDZK1 cells, which was inhibited by elacridar and the BCRP inhibitor Ko143, respectively. The present findings thus indicate that P-glycoprotein and BCRP are involved in the accumulation of regorafenib and its active metabolites in the skin, by affecting either their systemic exposure or their plasma distribution in the circulating blood. © 2017 American Pharmacists Association®.Embargo Period 12 month

    Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for sn-38, an active metabolite of irinotecan, in humans

    Get PDF
    Purpose: Clinical study has previously revealed that plasma concentration of 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan, was higher in patients with end-stage renal failure than those with normal kidney function although SN-38 is mainly eliminated in the liver. Here, we focused on inhibition by uremic toxins of hepatic SN-38 uptake and down-regulation of uptake transporter(s) by uremic plasma in humans. Methods: We evaluated SN-38 uptake and its inhibition by uremic toxins, 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), indoxyl sulfate (Indox), hippuric acid (HA) and indole acetate (IA), with cryopreserved human hepatocytes and HEK293 cells stably expressing hepatic uptake transporters, organic anion transporting polypeptides (OATPs). We also collected plasma samples from patients with severe renal failure to examine their effects on mRNA level of OATPs in primary cultured human hepatocytes. Results: SN-38 was taken up by hepatocytes, which showed biphasic saturation patterns. The SN-38 uptake by hepatocytes was significantly inhibited by a uremic toxin mixture including clinically relevant concentrations of CMPF, Indox, HA and IA. Kinetic analyses for OATP-mediated transport revealed that the uptake of SN-38 by OATP1B1 was the highest, followed by OATP1B3. Among the uremic toxins, CMPF exhibited most potent inhibition of OATP1B1-mediated SN-38 uptake and directly inhibited the uptake of SN-38 also in hepatocytes. In addition, gene expression of OATP1B1 and OATP1B3 in hepatocytes was significantly down-regulated by the treatment with the uremic plasma. Conclusions: OATP1B1-mediated hepatic uptake of SN-38 was inhibited by uremic toxins, and gene expression of OATP1B1 was down-regulated by uremic plasma. © 2013 Springer Science+Business Media New York

    Localization of Xenobiotic Transporter OCTN1/SLC22A4 in Hepatic Stellate Cells and Its Protective Role in Liver Fibrosis

    Get PDF
    Xenobiotic transporters play key roles in disposition of certain therapeutic agents, although limited information is available on their roles other than pharmacokinetic issues. Here, suppressive effect of multispecific organic cation transporter OCTN1/SLC22A4 on liver fibrosis was proposed in liver injury models. After injection of hepatotoxins such as dimethylnitrosamine (DMN) or concanavalin A, hepatic fibrosis, and oxidative stress, evaluated in terms of Sirius red and 4-hydroxy-2-nonenal staining, respectively, were more severe in liver of octn1/slc22a4 gene knockout (octn1-/-) mice than that in wild-type mice. DMN treatment markedly increased α-smooth muscle actin and F4/80, markers of activated stellate and Kupffer cells, respectively, in liver of octn1-/-, but had less effect in wild-type mice. Thus, octn1/slc22a4 gene deletion results in more severe hepatic fibrosis, oxidative stress, and inflammation. DMN-treated wild-type mice showed increased Octn1 staining and hepatic concentration of its food-derived antioxidant ergothioneine (ERGO). The upregulated Octn1 was co-localized with α-smooth muscle actin. Functional expression of Octn1 was demonstrated in activated human hepatic stellate cell lines, LI90 and LX-2. Provision of ERGO-rich feed ameliorated DMN-induced liver fibrosis and oxidative stress. Overall, Octn1 is upregulated in activated stellate cells, resulting in increased delivery of its substrate antioxidant ERGO and a protective effect against liver fibrosis. © 2016 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.Embargo Period 12 month

    Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats

    Get PDF
    The renin–angiotensin system (RAS) is involved in the pathogenesis of insulin sensitivity (IS). The role of RAS in insulin resistance and muscular circulation has yet to be elucidated. Therefore, this study sought to determine the mechanisms of angiotensin II receptor blockers (ARBs) and/or diuretics on IS and capillary density (CD) in fructose-fed rats (FFRs). Sprague-Dawley rats were fed either normal chow (control group) or fructose-rich chow for 8 weeks. For the last 4 weeks, FFRs were allocated to four groups: an FFR group and groups treated with the thiazide diuretic hydrochlorothiazide (HCTZ), with the ARB losartan, or both. IS was evaluated by the euglycemic hyperinsulinemic glucose clamp technique at week 8. In addition, CD in the extensor digitorum longus muscle was evaluated. Blood pressure was significantly higher in the FFRs than in the controls. HCTZ, losartan and their combination significantly lowered blood pressure. IS was significantly lower in the FFR group than in the controls and was even lower in the HCTZ group. Losartan alone or combined with HCTZ significantly increased IS. In all cases, IS was associated with muscular CD, but not with plasma adiponectin or lipids. These results indicate that losartan reverses HCTZ-exacerbated insulin resistance, which can be mediated through the modulation of muscular circulation in rats with impaired glucose metabolism

    細菌由来グリコサミノグリカン分解酵素系の構造と機能に関する研究

    Get PDF
    京都大学0048新制・課程博士博士(農学)甲第18475号農博第2075号新制||農||1025(附属図書館)学位論文||H26||N4859(農学部図書室)31353京都大学大学院農学研究科食品生物科学専攻(主査)教授 河田 照雄, 教授 保川 清, 准教授 橋本 渉学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDFA

    Crystal structure of a bacterial unsaturated glucuronyl hydrolase with specificity for heparin.

    Get PDF
    Extracellular matrix molecules such as glycosaminoglycans (GAGs) are typical targets for some pathogenic bacteria, which allow adherence to host cells. Bacterial polysaccharide lyases depolymerize GAGs in β-elimination reactions, and the resulting unsaturated disaccharides are subsequently degraded to constituent monosaccharides by unsaturated glucuronyl hydrolases (UGLs). UGL substrates are classified as 1, 3- and 1, 4-types based on the glycoside bonds. Unsaturated chondroitin and heparin disaccharides are typical members of 1, 3- and 1, 4-types, respectively. Here we show the reaction modes of bacterial UGLs with unsaturated heparin disaccharides by x-ray crystallography, docking simulation, and site-directed mutagenesis. Although streptococcal and Bacillus UGLs were active on unsaturated heparin disaccharides, those preferred 1, 3- rather than 1, 4-type substrates. The genome of GAG-degrading Pedobacter heparinus encodes 13 UGLs. Of these, Phep_2830 is known to be specific for unsaturated heparin disaccharides. The crystal structure of Phep_2830 was determined at 1.35-Å resolution. In comparison with structures of streptococcal and Bacillus UGLs, a pocket-like structure and lid loop at subsite +1 are characteristic of Phep_2830. Docking simulations of Phep_2830 with unsaturated heparin disaccharides demonstrated that the direction of substrate pyranose rings differs from that in unsaturated chondroitin disaccharides. Acetyl groups of unsaturated heparin disaccharides are well accommodated in the pocket at subsite +1, and aromatic residues of the lid loop are required for stacking interactions with substrates. Thus, site-directed mutations of the pocket and lid loop led to significantly reduced enzyme activity, suggesting that the pocket-like structure and lid loop are involved in the recognition of 1, 4-type substrates by UGLs
    corecore