47 research outputs found

    Vital staining for cell death identifies Atg9a-dependent necrosis in developmental bone formation in mouse

    Get PDF
    Programmed cell death has a crucial role in various biological events, including developmental morphogenesis. Recent evidence indicates that necrosis contributes to programmed cell death in addition to apoptosis, but it is unclear whether necrosis acts as a compensatory mechanism for failure of apoptosis or has an intrinsic role during development. In contrast to apoptosis, there have been no techniques for imaging physiological necrosis in vivo. Here we employ vital staining using propidium iodide to identify cells with plasma membrane disruption (necrotic cells) in mouse embryos. We discover a form of necrosis at the bone surface, which does not occur in embryos with deficiency of the autophagy-related gene Atg9a, although it is unaffected by Atg5 knockout. We also find abnormalities of the bone surface in Atg9a knockout mice, suggesting an important role of Atg9a-dependent necrosis in bone surface formation. These findings suggest that necrosis has an active role in developmental morphogenesis

    TONS504-PHOTODYNAMIC THERAPY INDUCES CYTOTOXIC EFFECTS IN EMT6 CELLS

    Get PDF
    In the present study, TONS504 (C51H58N8O5I2; molecular weight, 1,116.9), a novel cationic hydrophilic photosensitizer, was synthesized from protoporphyrin IX dimethyl ester through a five‑step process according to a patented method for use in photodynamic therapy (PDT). The subcellular localization of TONS504 and the cytotoxic effects of TONS504‑mediated PDT in the mouse mammary tumor EMT6 cell line were investigated. TONS504 was localized primarily in the lysosomes and partially in the mitochondria. The cytotoxic effects of TONS504‑mediated PDT in the mouse mammary tumor EMT6 cell line were investigated using a WST8 assay and an Oxidative Stress kit. The cell viability values following treatment with 10 µg/ml TONS504 at light energies of 0, 1, 5 and 10 J/cm2 were 92.5, 101.8, 27.7 and 1.8%, respectively. The percentages of reactive oxygen species (ROS)(+) cells following the same treatment were 8.6, 8.5, 29.2 and 70.1%, respectively, whereas the percentages of apoptotic cells were 7.1, 5.6, 24.8 and 48.7%, respectively. The percentages of ROS(+) and apoptotic cells in the group subjected to TONS504‑mediated PDT increased in a manner dependent on the TONS504 concentration and light energy. Further studies are required to evaluate the in vivo pharmacokinetics, tissue distribution and photodynamic effects of TONS504

    Artesunate Enhances the Cytotoxicity of 5-Aminolevulinic Acid-Based Sonodynamic Therapy against Mouse Mammary Tumor Cells In Vitro

    Get PDF
    Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound (US) and a sonosensitizer agent. 5-Aminolevulinic acid (5-ALA) has been used as a sonodynamic sensitizer for cancer treatment. However, studies have shown that 5-ALA-based SDT has limited efficacy against malignant tumors. In this study, we examined whether artesunate (ART) could enhance the cytotoxicity of 5-ALA-based SDT against mouse mammary tumor (EMT-6) cells in vitro. In the ART, ART + US, ART + 5-ALA, and ART + 5-ALA + US groups, the cell survival rate correlated with ART concentration, and decreased with increasing concentrations of ART. Morphologically, many apoptotic and necrotic cells were observed in the ART + 5-ALA + US group. The percentage of reactive oxygen species-positive cells in the ART + 5-ALA + US group was also significantly higher than that in the 5-ALA group (p = 0.0228), and the cell death induced by ART + 5-ALA + US could be inhibited by the antioxidant N-acetylcysteine. These results show that ART offers great potential in enhancing the efficacy of 5-ALA-based SDT for the treatment of cancer. However, these results are only based on in vitro studies, and further in vivo studies are required

    Mechanical Properties of Shear Stud during and after Fire

    No full text

    IRE1–XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells

    Get PDF
    In mammalian pancreatic β cells, the IRE1α–XBP1 pathway is constitutively and highly activated under physiological conditions. To elucidate the precise role of this pathway, we constructed β cell–specific Ire1α conditional knockout (CKO) mice and established insulinoma cell lines in which Ire1α was deleted using the Cre–loxP system. Ire1α CKO mice showed the typical diabetic phenotype including impaired glycemic control and defects in insulin biosynthesis postnatally at 4–20 weeks. Ire1α deletion in pancreatic β cells in mice and insulinoma cells resulted in decreased insulin secretion, decreased insulin and proinsulin contents in cells, and decreased oxidative folding of proinsulin along with decreased expression of five protein disulfide isomerases (PDIs): PDI, PDIR, P5, ERp44, and ERp46. Reconstitution of the IRE1α–XBP1 pathway restored the proinsulin and insulin contents, insulin secretion, and expression of the five PDIs, indicating that IRE1α functions as a key regulator of the induction of catalysts for the oxidative folding of proinsulin in pancreatic β cells
    corecore