213 research outputs found

    Clinical efficacy of intermittent pressure augmented–retrograde cerebral perfusion

    Get PDF
    ObjectiveDuring aortic surgery under hypothermic circulatory arrest, retrograde cerebral perfusion (RCP) is commonly used as a cerebroprotective method to extend the duration of circulatory arrest safely. Kitahori and colleagues described a novel protocol of RCP using intermittent pressure augmented (IPA)–RCP in 2005. The aim of the present study was to determine the clinical effectiveness of this novel protocol.MethodsA total of 20 consecutive patients undergoing total replacement of the aortic arch were assigned to a conventional RCP (n = 10) or an IPA-RCP group (n = 10). Cerebral perfusion was provided at a continuous venous pressure of 25 mm Hg in the conventional RCP, and venous pressure was intermittently provided at 20 mm Hg for 120 seconds and at 45 mm Hg for 30 seconds in the IPA-RCP group. The clinical outcomes were compared between the 2 groups. Regional cerebral oxygen saturation (rSO2) was measured using near infrared spectroscopy every 10 minutes from the beginning of RCP initiation. To represent the brain oxygen consumption, the decline ratio of rSO2 was calculated.ResultsThere was no surgical mortality or major neurologic complications in either group. The interval from the end of surgery to full wakefulness was significantly shorter in the IPA-RCP group (85 ± 64 minutes) than in the conventional RCP group (310 ± 282 minutes; P < .05). Although the initial rSO2 value did not show significant difference in both groups, the rSO2 with IPA-RCP was greater than that with conventional RCP from 10 to 70 minutes (P < .05). The decline ratio of rSO2 was lower in the IPA-RCP group than in the RCP perfusion group at all points (P < .05).ConclusionsIPA-RCP might provide more homogenous cerebral perfusion and a more effective oxygen supply to the brain with better clinical results than conventional RCP

    Experimental Determination of Bose-Hubbard Energies

    Get PDF
    We present the first experimental measurement of the ensemble averages of both the kinetic and interaction energies of the three-dimensional Bose--Hubbard model at finite temperature and various optical lattice depths across weakly to strongly interacting regimes, for an almost unit filling factor. The kinetic energy is obtained through Fourier transformation of a time-of-flight signal, and the interaction energy is measured using a newly developed atom-number-projection spectroscopy technique, by exploiting an ultra-narrow optical transition of two-electron atoms. The obtained experimental results can be used as benchmarks for state-of-the-art numerical methods of quantum many-body theory. As an illustrative example, we compare the measured energies with numerical calculations involving the Gutzwiller and cluster-Gutzwiller approximations, assuming realistic trap potentials and particle numbers at nonzero entropy (finite temperature); we obtain good agreement without fitting parameters. We also discuss the possible application of this method to temperature estimations for atoms in optical lattices using the thermodynamic relation. This study offers a unique advantage of cold atom system for `quantum simulators', because, to the best of our knowledge, it is the first experimental determination of both the kinetic and interaction energies of quantum many-body system.Comment: 22 pages, 20 figure

    Crystal structure of a Ca2+-dependent regulator of flagellar motility reveals the open-closed structural transition

    Get PDF
    Sperm chemotaxis toward a chemoattractant is very important for the success of fertilization. Calaxin, a member of the neuronal calcium sensor protein family, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis of ascidian, Ciona intestinalis. Here, we present the crystal structures of calaxin both in the open and closed states upon Ca2+ and Mg2+ binding. The crystal structures revealed that three of the four EF-hands of a calaxin molecule bound Ca2+ ions and that EF2 and EF3 played a critical role in the conformational transition between the open and closed states. The rotation of α7 and α8 helices induces a significant conformational change of a part of the α10 helix into the loop. The structural differences between the Ca2+- and Mg2+-bound forms indicates that EF3 in the closed state has a lower affinity for Mg2+, suggesting that calaxin tends to adopt the open state in Mg2+-bound form. SAXS data supports that Ca2+-binding causes the structural transition toward the closed state. The changes in the structural transition of the C-terminal domain may be required to bind outer-arm dynein. These results provide a novel mechanism for recognizing a target protein using a calcium sensor protein
    corecore