22 research outputs found

    Analgesic, antipyretic, anti-inflammatory, and hepatoprotective activities of Pulicaria crispa (Forssk.) Oliv. (Asteraceae)

    Get PDF
    Some plants of the genus Pulicaria have been used in traditional medicines for treating back pain and inflammation. They possess various bioactivities such as antipyretic, analgesic, and hepatoprotective. This study aimed to investigate the potential analgesic, antipyretic, anti- inflammatory, and hepatoprotective activities of Pulicaria crispa (P. crispa) extract (PCE). Analgesic activity was evaluated using the hot plate and acetic acid-induced writhing tests. Antipyretic and anti-inflammatory activities were evaluated using rectal temperature and carrageenan-induced hind paw edema methods, respectively. CCl4-intoxication was used for hepatoprotective activity. Also, liver histopathology was assessed. PCE, at 500 mg/kg, exhibited significant analgesic, antipyretic, and anti-inflammatory effects. The increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and bilirubin of CCl4-exposed rats reflects their liver injury. PCE significantly decreased the elevated liver markers. The hepatoprotective effect of PCE was confirmed, as it successfully reversed the altered levels of total protein, malondialdehyde (MDA), and non-protein sulfhydryls (NP-SH) in the liver tissues of CCl4-exposed rats. Histopathological studies confirmed the hepatoprotective nature of PCE. Pretreatment of rats with PCE reduced the severity of CCl4-induced liver damage. These findings concluded that PCE possesses analgesic, antipyretic, anti-inflammatory, and hepatoprotective activities

    Simultaneous determination of 6-shogaol and 6-gingerol in various ginger (Zingiber officinale Roscoe) extracts and commercial formulations using a green RP-HPTLC-densitometry method

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Various analytical methodologies have been reported for the determination of 6-shogaol (6-SHO) and 6-gingerol (6-GIN) in ginger extracts and commercial formulations. However, green analytical methods for the determination of 6-SHO and 6-GIN, either alone or in combination, have not yet been reported in literature. Hence, the present study was aimed to develop a rapid, simple, and cheaper green reversed phase high-performance thin-layer chromatography (RP-HPTLC) densitometry method for the simultaneous determination of 6-SHO and 6-GIN in the traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The simultaneous analysis of 6-SHO and 6-GIN was carried out via RP-18 silica gel 60 F254S HPTLC plates. The mixture of green solvents, i.e., ethanol:water (6.5:3.5 v/v) was utilized as a mobile phase for the simultaneous analysis of 6-SHO and 6-GIN. The analysis of 6-SHO and 6-GIN was performed at λmax = 200 nm for 6-SHO and 6-GIN. The densitograms of 6-SHO and 6-GIN from traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were verified by obtaining their single band at Rf = 0.36 ± 0.01 for 6-SHO and Rf = 0.53 ± 0.01 for 6-GIN, compared to standard 6-SHO and 6-GIN. The green RP-HPTLC method was found to be linear, in the range of 100–700 ng/band with R2 = 0.9988 for 6-SHO and 50–600 ng/band with R2 = 0.9995 for 6-GIN. In addition, the method was recorded as “accurate, precise, robust and sensitive” for the simultaneous quantification of 6-SHO and 6-GIN in traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The amount of 6-SHO in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas was obtained as 12.1, 17.9, 10.5, and 9.6 mg/g of extract, respectively. However, the amount of 6-SHO in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 14.6, 19.7, 11.6, and 10.7 mg/g of extract, respectively. The amount of 6-GIN in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were found as 10.2, 15.1, 7.3, and 6.9 mg/g of extract, respectively. However, the amount of 6-GIN in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 12.7, 17.8, 8.8, and 7.9 mg/g of extract, respectively. Overall, the results of this study indicated that the proposed analytical technique could be effectively used for the simultaneous quantification of 6-SHO and 6-GIN in a wide range of plant extracts and commercial formulations

    Anti-inflammatory and hepatoprotective potentials of the aerial parts of Silene villosa Caryophyllaceae methanol extract in rats

    Get PDF
    Purpose: To explore the anti-inflammatory and hepatoprotective potentials of Silene villosa Caryophyllaceae methanol extract in rats.Methods: Toxicity of S. villosa extract was evaluated in rats. Inflammation was induced in rats by injection of 0.1 mL carrageenan (1 %) in the left hind paws. Carbon tetrachloride (CCl4) was used to induce liver damage. Five groups of rat were used. The 1st (normal control) and 2nd (hepatotoxic) groups received the vehicle. The 3rd, 4th, and 5th groups received silymarin, 250 and 500 mg/kg of S. villosa extract, respectively, for 7 days. Liver injury was induced on the 7th day by intraperitoneal administration of 1 mL/kg of CCl4 to rats in groups 2 - 5.Results: The results showed that S. villosa is safe. It significantly reduced carrageenan-induced edema compared to normal (p < 0.01) and standard (p < 0.01) groups. The extract protected (p < 0.01) rats against the deleterious effect of CCl4. It decreased (p < 0.01) the elevated serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (γ-GT) and alkaline phosphatase (ALP) as well as elevated serum levels of bilirubin (BRN), compared to CCl4 control rats. Reduced activities of the antioxidant enzymes were significantly increased (p < 0.01) in rat liver, compared with CCl4 control group. The results were confirmed by histological findings in rat liver as the extract reduced necrosis and hydropic degeneration of hepatic tissue compared to CCl4 control group.Conclusion: The results suggest that S. villosa possesses anti-inflammatory and hepatoprotective activities in rats, and therefore, has therapeutic potentials in humans.Keywords: S. villosa, anti-inflammatory, carrageenan, CCl4, antioxidant, hepatotoxicity

    The Cardioprotective Effect of Corosolic Acid in the Diabetic Rats: A Possible Mechanism of the PPAR-γ Pathway

    No full text
    The study was conducted to determine whether corosolic acid could protect the myocardium of diabetic rats from damage caused by isoproterenol (ISO) and, if so, how peroxisome proliferator-activated receptor gamma (PPAR-γ) activation might contribute into this protection. Diabetes in the rats was induced by streptozotocin (STZ), and it was divided into four groups: the diabetic control group, diabetic rats treated with corosolic acid, diabetic rats treated with GW9662, and diabetic rats treated with corosolic acid plus GW9662. The study was carried out for 28 days. The diabetic control and ISO control groups showed a decrease in mean arterial pressure (MAP) and diastolic arterial pressure (DAP) and an increase in systolic arterial pressure (SAP). The rat myocardium was activated by corosolic acid treatment, which elevated PPAR-γ expression. A histopathological analysis showed a significant reduction in myocardial damage by reducing myonecrosis and edema. It was found that myocardial levels of CK-MB and LDH levels were significantly increased after treatment with corosolic acid. By decreasing lipid peroxidation and increasing endogenous antioxidant levels, corosolic acid therapy showed a significant improvement over the ISO diabetic group. In conclusion, our results prove that corosolic acid can ameliorate ISO-induced acute myocardial injury in rats. Based on these results, corosolic acid seems to be a viable new target for the treatment of cardiovascular diseases and other diseases of a similar nature

    The Cardioprotective Effect of Corosolic Acid in the Diabetic Rats: A Possible Mechanism of the PPAR-γ Pathway

    No full text
    The study was conducted to determine whether corosolic acid could protect the myocardium of diabetic rats from damage caused by isoproterenol (ISO) and, if so, how peroxisome proliferator-activated receptor gamma (PPAR-γ) activation might contribute into this protection. Diabetes in the rats was induced by streptozotocin (STZ), and it was divided into four groups: the diabetic control group, diabetic rats treated with corosolic acid, diabetic rats treated with GW9662, and diabetic rats treated with corosolic acid plus GW9662. The study was carried out for 28 days. The diabetic control and ISO control groups showed a decrease in mean arterial pressure (MAP) and diastolic arterial pressure (DAP) and an increase in systolic arterial pressure (SAP). The rat myocardium was activated by corosolic acid treatment, which elevated PPAR-γ expression. A histopathological analysis showed a significant reduction in myocardial damage by reducing myonecrosis and edema. It was found that myocardial levels of CK-MB and LDH levels were significantly increased after treatment with corosolic acid. By decreasing lipid peroxidation and increasing endogenous antioxidant levels, corosolic acid therapy showed a significant improvement over the ISO diabetic group. In conclusion, our results prove that corosolic acid can ameliorate ISO-induced acute myocardial injury in rats. Based on these results, corosolic acid seems to be a viable new target for the treatment of cardiovascular diseases and other diseases of a similar nature

    Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures

    No full text
    This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy–entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2–318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van’t Hoff, Apelblat, Buchowski–Ksiazczak λh, Yalkowsly–Roseman, Jouyban–Acree, and van’t Hoff–Jouyban–Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10−2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10−6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization

    A Green RP-HPTLC-Densitometry Method for the Determination of Diosmin in Pharmaceutical Formulations

    No full text
    Green analytical technologies for the determination of a bioactive compound diosmin (DIOM) in the real samples of pharmaceutical formulations and biological fluids are scarce in literature. Therefore, the present investigation was carried out to develop a novel, rapid, simple, and economical green “reversed phase high-performance thin-layer chromatography (RP-HPTLC)” method for the determination of DIOM in commercial tablets and in-house developed spray-dried microparticles (MPs). The quantification of DIOM was conducted via “RP-18 silica gel 60 F254S HPTLC plates”. The binary combination of green solvents, i.e., ethanol:water (5.5:4.5 v/v) was proposed as a green mobile phase. The analysis of DIOM was conducted in absorbance/reflectance mode of densitometry at λmax = 348 nm. The densitograms of DIOM from the commercial tablets and in-house developed spray-dried MPs were verified by recording their single band at Rf = 0.80 ± 0.02 compared to standard DIOM. Green RP-HPTLC method was observed as linear in the range of 100–700 ng/band with R2 = 0.9995. The proposed method was found as “accurate, precise, robust, and sensitive” for the determination of DIOM in the real samples of commercial tablets and in-house developed spray-dried MPs. The % content of DIOM in the real samples of commercial tablets and in-house developed spray-dried MPs was obtained as 99.06 and 101.30%, respectively. The recorded results of this research suggested that the green RP-HPTLC method can be effectively used for the routine analysis of DIOM in pharmaceutical products

    Solubility Determination, Hansen Solubility Parameters and Thermodynamic Evaluation of Thymoquinone in (Isopropanol + Water) Compositions

    No full text
    This article studies the solubility, Hansen solubility parameters (HSPs), and thermodynamic behavior of a naturally-derived bioactive thymoquinone (TQ) in different binary combinations of isopropanol (IPA) and water (H2O). The mole fraction solubilities (x3) of TQ in various (IPA + H2O) compositions are measured at 298.2–318.2 K and 0.1 MPa. The HSPs of TQ, neat IPA, neat H2O, and binary (IPA + H2O) compositions free of TQ are also determined. The x3 data of TQ are regressed by van’t Hoff, Apelblat, Yalkowsky–Roseman, Buchowski–Ksiazczak λh, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The maximum and minimum x3 values of TQ are recorded in neat IPA (7.63 × 10−2 at 318.2 K) and neat H2O (8.25 × 10−5 at 298.2 K), respectively. The solubility of TQ is recorded as increasing with the rise in temperature and IPA mass fraction in all (IPA + H2O) mixtures, including pure IPA and pure H2O. The HSP of TQ is similar to that of pure IPA, suggesting the great potential of IPA in TQ solubilization. The maximum molecular solute-solvent interactions are found in TQ-IPA compared to TQ-H2O. A thermodynamic study indicates an endothermic and entropy-driven dissolution of TQ in all (IPA + H2O) mixtures, including pure IPA and pure H2O

    Neuroprotective potential of Afzelin: A novel approach for alleviating catalepsy and modulating Bcl-2 expression in Parkinson's disease therapy

    No full text
    The lost dopaminergic neurons in the brain prevent mobility in Parkinson's disease (PD). It is impossible to stop the disease's progress by means of symptoms management. Research focuses on oxidative stress, mitochondrial dysfunction, and neuronal degeneration. Exploration of potential neuroprotective drugs against prosurvival B-cell lymphoma 2 (Bcl-2) protein is ongoing. An investigable cause behind PD, as well as preventive measures, could be discovered considering the association between such behavioural manifestations (cataleptic behaviours) and PD. The compound Afzelin, known to guard the nervous system, was chosen for this study. The study was done on rats divided into six different groups. First, there was a control group. The other group was treated with Reserpine (RES) (1 mg/kg). The third group received RES (1 mg/kg) and levodopa (30 mg/kg). The remaining three groups were given RES (1 mg/kg) in conjunction with Afzelin at the following doses: 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cataleptic behavior and mobility in rats was assessed using the rotarod, open field, and modified forced-swim tests. thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), biogenic amines, and Bcl-2 level in rat tissue homogenates were considered. According to the study's findings, the rats treated through co-administration of RES and Afzelin improved significantly in their cataleptic behaviours and locomotor activity. In addition, administering Afzelin itself caused Bcl-2 expression, which could have some neuroprotection properties. This study provides meaningful information on the effectiveness of Afzelin in handling catalepsy and other degenerative neurologic disorders. As a result, other studies need to be conducted to establish the reasons behind the reactions and determine the long-term effects of Afzelin on these conditions

    Epidemiology of Healthcare-Associated Infections and Adherence to the HAI Prevention Strategies

    No full text
    Healthcare-associated infections are widely considered one of the most common unfavorable outcomes of healthcare delivery. Ventilator-associated pneumonia, central line-associated bloodstream infections, and catheter-associated urinary tract infections are examples of healthcare-associated infections. The current study was a retrospective study conducted at a public hospital in Unaizah, Saudi Arabia, to investigate the frequency of healthcare-associated illnesses and adherence to healthcare-associated infection prevention techniques in the year 2021. Surgical site infections occurred at a rate of 0.1%. The average number of catheter-associated urinary tract infections per 1000 catheter days was 0.76. The average number of central line-associated bloodstream infections per 1000 central line days was 2.6. The rate of ventilator-associated pneumonia was 1.1 per 1000 ventilator days on average. The average number of infections caused by multidrug-resistant organisms per 1000 patient days was 2.8. Compliance rates were 94%, 100%, 99%, and 76% for ventilator-associated pneumonia, central line-associated bloodstream infections, catheter-associated urinary tract infections, and hand hygiene bundles, respectively. It is critical to participate in more educational events and workshops, particularly those that emphasize hand cleanliness and personal safety equipment
    corecore