3,253 research outputs found

    Design analysis of potential grid connected floating photovoltaic system in UTHM

    Get PDF
    Every month Universiti Tun Hussein Onn (UTHM) management pays around RM 1 million for electricity bills. The aim of this project is to explore the feasibility of implementing a grid connected Floating Photovoltaic (FPV) system at the campus of UTHM. There are multiple unutilized water bodies (ponds/lakes) within the campus premises covering a total area of more than 50,000 m2. A 4000 m2 located at the lake near faculty of technical and vocational education (FPTV) is considered of the total available area for the feasibility study. A total of 1372.6 kW can be generated by deploying 335W mono crystalline PV modules with 21% efficiency on a floating mechanism (floaters) on the selected area. The FPV system is then simulated using MATLAB Simulink to observe the performance parameters of the FPV system such as total harmonic distortion (THD), current and voltage waveforms. Hybrid Optimization Model for Electric Renewable (HOMER) software has been used to obtain results such as the net present cost (NPC), cost of operation (COE), CO2 emissions impact and the payback period of the grid connected FPV system. The FPV system provides the lowest cost of energy (LCOE) RM0.418 kWh and a total net present cost (NPC) of RM 52.3 million. This system can decrease CO2 emissions by about 1241 t/yr

    A Low-Complexity Precoding Scheme for the Downlink of Multi-Cell Multi-User MIMO AF System

    Get PDF
    Because of its simplicity, amplify-and-forward (AF) is one of the most popular cooperative relaying technique. Relays are used in cooperative communication to improve reliability, coverage or spectral efficiency of cell-edge users. However, relays tend to increase the interferences seen by users of adjacent cells, particularly by the cell-edge users, when used in multi-cell systems. In this paper, we propose a low-complexity precoding scheme to mitigate the effect of other-cell interference (OCI) in cooperative communication. The scheme is designed by taking into account the interference plus noise covariance matrix of each user for mitigating the interference at each receiver by means of precoding at the relay node. Simulation results show the effectiveness of the proposed scheme, both in terms of sum-rate and computational complexity, when compared to other existing OCI-aware precoding algorithms for AF

    Ultrafine conducting fibers: metallization of poly(acrylonitrile-co-glycidyl methacrylate) nanofibers

    Get PDF
    Electrospun poly(glycidylmethacrylate) (PGMA) and poly(acrylonitrile-co-glycidyl methacrylate) (P(AN-GMA)) nanofibers were coated with monodisperse silver nanoparticles by using an electroless plating technique at ambient conditions. Oxirane groups on the surface of nanofibers were replaced with reducing agent, hydrazine. Surface modified nanofibers were allowed to react with ammonia solution of AgNO3. A redox reaction takes place and metallic silver nucleate on fibers surface. Parameters affecting the particle size were determined

    A new approach on helices in Euclidean n-space

    Get PDF
    In this work, we give some new characterizations for inclined curves and slant helices in n-dimensional Euclidean space E^{n}. Morever, we consider the pre-characterizations about inclined curves and slant helices and reconfigure them

    A User Scheduling Scheme for Reducing Electromagnetic (EM) Emission in the Uplink of Mobile Communication Systems

    Get PDF
    The ubiquity and convergence of wireless communication services have contributed to an unprecedented popularity of mobile communications. Given that wireless communication systems operate on radiofrequency waves, the electromagnetic (EM) radiation exposure they generate is also unprecedented and, hence, this could have adverse health effects on both humans and animals according to the World Health Organization. In this paper, we propose a user scheduling/power allocation scheme to minimize the EM exposure of users subject to transmitting a target number of bits. Our user scheduling method is based on assigning priority levels to each user and the user with the lowest priority level is scheduled for transmission. Power allocation, on the other hand, is based on the water-filling approach over time by using the past channel gains of a user to compute its water level. Simulation results show that our proposed scheme performs much better than a spectral efficiency based scheme but has a higher EM emission in comparison with a non-practical ideal scheme
    corecore