5 research outputs found

    Quantifying evidence toward pathogenicity for rare phenotypes: The case of succinate dehydrogenase genes, SDHB and SDHD.

    Get PDF
    PURPOSE: The weight of the evidence to attach to observation of a novel rare missense variant in SDHB or SDHD in individuals with the rare neuroendocrine tumors, pheochromocytomas and paragangliomas (PCC/PGL), is uncertain. METHODS: We compared the frequency of SDHB and SDHD very rare missense variants (VRMVs) in 6328 and 5847 cases of PCC/PGL, respectively, with that of population controls to generate a pan-gene VRMV likelihood ratio (LR). Via windowing analysis, we measured regional enrichments of VRMVs to calculate the domain-specific VRMV-LR (DS-VRMV-LR). We also calculated subphenotypic LRs for variant pathogenicity for various clinical, histologic, and molecular features. RESULTS: We estimated the pan-gene VRMV-LR to be 76.2 (54.8-105.9) for SDHB and 14.8 (8.7-25.0) for SDHD. Clustering analysis revealed an SDHB enriched region (ɑɑ 177-260, P = .001) for which the DS-VRMV-LR was 127.2 (64.9-249.4) and an SDHD enriched region (ɑɑ 70-114, P = .000003) for which the DS-VRMV-LR was 33.9 (14.8-77.8). Subphenotypic LRs exceeded 6 for invasive disease (SDHB), head-and-neck disease (SDHD), multiple tumors (SDHD), family history of PCC/PGL, loss of SDHB staining on immunohistochemistry, and succinate-to-fumarate ratio >97 (SDHB, SDHD). CONCLUSION: Using methodology generalizable to other gene-phenotype dyads, the LRs relating to rarity and phenotypic specificity for a single observation in PCC/PGL of a SDHB/SDHD VRMV can afford substantial evidence toward pathogenicity

    Germline Pathogenic Variants in Cancer Predisposition Genes Among Women With Invasive Lobular Carcinoma of the Breast.

    No full text
    PurposeTo determine the contribution of germline pathogenic variants (PVs) in hereditary cancer testing panel genes to invasive lobular carcinoma (ILC) of the breast.Materials and methodsThe study included 2,999 women with ILC from a population-based cohort and 3,796 women with ILC undergoing clinical multigene panel testing (clinical cohort). Frequencies of germline PVs in breast cancer predisposition genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, PALB2, PTEN, RAD51C, RAD51D, and TP53) were compared between women with ILC and unaffected female controls and between women with ILC and infiltrating ductal carcinoma (IDC).ResultsThe frequency of PVs in breast cancer predisposition genes among women with ILC was 6.5% in the clinical cohort and 5.2% in the population-based cohort. In case-control analysis, CDH1 and BRCA2 PVs were associated with high risks of ILC (odds ratio [OR] > 4) and CHEK2, ATM, and PALB2 PVs were associated with moderate (OR = 2-4) risks. BRCA1 PVs and CHEK2 p.Ile157Thr were not associated with clinically relevant risks (OR < 2) of ILC. Compared with IDC, CDH1 PVs were > 10-fold enriched, whereas PVs in BRCA1 were substantially reduced in ILC.ConclusionThe study establishes that PVs in ATM, BRCA2, CDH1, CHEK2, and PALB2 are associated with an increased risk of ILC, whereas BRCA1 PVs are not. The similar overall PV frequencies for ILC and IDC suggest that cancer histology should not influence the decision to proceed with genetic testing. Similar to IDC, multigene panel testing may be appropriate for women with ILC, but CDH1 should be specifically discussed because of low prevalence and gastric cancer risk

    Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families

    No full text
    PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 x 10(-76)), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 x 10(-3)), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 x 10(-3)), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 x 10(-2)). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 x 10(-3)). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers. (C) 2019 by American Society of Clinical Oncolog
    corecore