26 research outputs found

    Enzyme/pH-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal

    No full text
    AbstractIn this paper, we developed a novel strategy of preparing doxorubicin (DOX) nanocrystal (NC) exerting spherical particles with a diameter of 102 nm, which experienced following coating of chondroitin sulphate derivative (CSOA) shell via electrostatic and hydrophobic interactions. Such multifunctional outerwear resulted in drug nanocapsules with high drug loading content up to 70% and high colloidal stability under physiological conditions. It exhibited accelerated drug release behaviour when dispersing in hyaluronidase (HAase) containing medium or incubated with cancer cells. CSOA/NCs were effectively taken up by cancer cells via CD44 receptor-mediated endocytosis, but were rarely internalised into normal fibroblasts. With the comparison of typical drug-loaded micelles system (DOX/PEG-PCL), CSOA/NCs showed greater inhibition to cancer cells due to the targeted and sensitive drug delivery

    Single Cell Total RNA Sequencing through Isothermal Amplification in Picoliter-Droplet Emulsion

    No full text
    Prevalent single cell RNA amplification and sequencing chemistries mainly focus on polyadenylated RNAs in eukaryotic cells by using oligo­(dT) primers for reverse transcription. We develop a new RNA amplification method, “easier-seq”, to reverse transcribe and amplify the total RNAs, both with and without polyadenylate tails, from a single cell for transcriptome sequencing with high efficiency, reproducibility, and accuracy. By distributing the reverse transcribed cDNA molecules into 1.5 × 10<sup>5</sup> aqueous droplets in oil, the cDNAs are isothermally amplified using random primers in each of these 65-pL reactors separately. This new method greatly improves the ease of single-cell RNA sequencing by reducing the experimental steps. Meanwhile, with less chance to induce errors, this method can easily maintain the quality of single-cell sequencing. In addition, this polyadenylate-tail-independent method can be seamlessly applied to prokaryotic cell RNA sequencing

    Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments

    No full text
    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods

    The effect of π-Conjugation on the self-assembly of micelles and controlled cargo release

    No full text
    AbstractHere we presented a novel micelle self-assembled from amphiphiles with π-conjugated moieties (OEG-DPH). The π-conjugated structural integrity of the micelles enabled stable encapsulation of Nile Red (NR, model drug). The self-assembly behaviour of the amphiphiles and the release profile of NR loaded micelles were investigated. Spherical core-shell structured NR loaded micelles with low CMC of 57 μg/mL and the efficient intracellular delivery process was monitored. This research provided a way to fabricate stable polymeric micelles and develop a practical nanocarrier for therapeutics delivery

    Tagmentation on Microbeads: Restore Long-Range DNA Sequence Information Using Next Generation Sequencing with Library Prepared by Surface-Immobilized Transposomes

    No full text
    The next generation sequencing (NGS) technologies have been rapidly evolved and applied to various research fields, but they often suffer from losing long-range information due to short library size and read length. Here, we develop a simple, cost-efficient, and versatile NGS library preparation method, called tagmentation on microbeads (TOM). This method is capable of recovering long-range information through tagmentation mediated by microbead-immobilized transposomes. Using transposomes with DNA barcodes to identically label adjacent sequences during tagmentation, we can restore inter-read connection of each fragment from original DNA molecule by fragment-barcode linkage after sequencing. In our proof-of-principle experiment, more than 4.5% of the reads are linked with their adjacent reads, and the longest linkage is over 1112 bp. We demonstrate TOM with eight barcodes, but the number of barcodes can be scaled up by an ultrahigh complexity construction. We also show this method has low amplification bias and effectively fits the applications to identify copy number variations

    Digital Polymerase Chain Reaction in an Array of Femtoliter Polydimethylsiloxane Microreactors

    No full text
    We developed a simple, compact microfluidic device to perform high dynamic-range digital polymerase chain reaction (dPCR) in an array of isolated 36-femtoliter microreactors. The density of the microreactors exceeded 20 000/mm<sup>2</sup>. This device, made from polydimethylsiloxane (PDMS), allows the samples to be loaded into all microreactors simultaneously. The microreactors are completely sealed through the deformation of a PDMS membrane. The small volume of the microreactors ensures a compact device with high reaction efficiency and low reagent and sample consumption. Future potential applications of this platform include multicolor dPCR and massively parallel dPCR for next generation sequencing library preparation

    Evaluation of a Novel Missense Mutation in ABCB4 Gene Causing Progressive Familial Intrahepatic Cholestasis Type 3

    No full text
    Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a hepatic disorder occurring predominantly in childhood and is difficult to diagnose. PFIC3, being a rare autosomal recessive disease, is caused by genetic mutations in both alleles of ABCB4, resulting in the disruption of the bile secretory pathway. The identification of pathogenic effects resulting from different mutations in ABCB4 is the key to revealing the internal cause of disease. These mutations cause truncation, instability, misfolding, and impaired trafficking of the MDR3 protein. Here, we reported a girl, with a history of intrahepatic cholestasis and progressive liver cirrhosis, with an elevated gamma-glutamyltransferase level. Genetic screening via whole exome sequencing found a novel homozygous missense mutation ABCB4:c.1195G>C:p.V399L, and the patient was diagnosed with PFIC3. Various computational tools predicted the variant to be deleterious and evolutionary conserved. For functional characterization studies, plasmids, encoding ABCB4 wild-type and selected established mutant constructs, were expressed in human embryonic kidney (HEK-293T) and hepatocellular carcinoma (HepG2) cells. In vitro expression analysis observed a reduced expression of mutant protein compared to wild-type protein. We found that ABCB4 wild type was localized at the apical canalicular membrane, while mutant p.V399L showed intracellular retention. Intracellular mistrafficking proteins usually undergo proteasomal or lysosomal degradation. We found that after treatment with proteasomal inhibitor MG132 and lysosomal inhibitor bafilomycin A1, MDR3 expression of V399L was significantly increased. A decrease in MDR3 expression of mutant V399L protein may be a result of proteasomal or lysosomal degradation. Pharmacological modulator cyclosporin A and intracellular low temperature (30°C) treatment significantly rescued both the folding defect and the active maturation of the mutant protein. Our study identified a novel pathogenic mutation which expanded the mutational spectrum of the ABCB4 gene and may contribute to understanding the molecular basis of PFIC3. Therefore, genetic screening plays a conclusive role in the diagnosis of rare heterogenic disorders like PFIC3
    corecore