215 research outputs found

    Process Reengineering: China\u27s Public Health Emergency Information System

    Get PDF
    The SARS crisis has exposed the inability of China’s fragile public health system to respond to emergencies. China’s central government has initiated a national project to establish a public health emergency information system (PHEIS). The purpose of this study is to investigate the ongoing development of China’s PHEIS. By using a functional coupling framework, the paper analyzes the weakness of the old public health system, describes the design and functionalities of PHEIS, and discusses implications on future system development from a process reengineering perspective

    CFD Analysis and Experiment Study of the Rotary Two-Stage Inverter Compressor with Vapor Injection

    Get PDF
    The offset angle of the upper and lower part of the crankshaft will affect the resistance of inspiration of high stage cylinder in the rotary two-stage inverter compressor with vapor injection, and then affect the performance. this paper presents the performance of the rotary two-stage inverter compressor with vapor injection in the bias angle of the crankshaft is calculated and compared with the experimental. The simulation results are in agreement with the experimental results. Under the operation of close vapor injection and open vapor injection, the performance of compressor can be improved 1% and 3% separately by optimize the bial angle of crankshaft.

    On the Generation of Medical Question-Answer Pairs

    Full text link
    Question answering (QA) has achieved promising progress recently. However, answering a question in real-world scenarios like the medical domain is still challenging, due to the requirement of external knowledge and the insufficient quantity of high-quality training data. In the light of these challenges, we study the task of generating medical QA pairs in this paper. With the insight that each medical question can be considered as a sample from the latent distribution of questions given answers, we propose an automated medical QA pair generation framework, consisting of an unsupervised key phrase detector that explores unstructured material for validity, and a generator that involves a multi-pass decoder to integrate structural knowledge for diversity. A series of experiments have been conducted on a real-world dataset collected from the National Medical Licensing Examination of China. Both automatic evaluation and human annotation demonstrate the effectiveness of the proposed method. Further investigation shows that, by incorporating the generated QA pairs for training, significant improvement in terms of accuracy can be achieved for the examination QA system.Comment: AAAI 202

    Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics

    Full text link
    Tuning the Gilbert damping of ferromagnetic (FM) metals via a nonvolatile way is of importance to exploit and design next-generation novel spintronic devices. Through systematical first-principles calculations, we study the magnetic properties of the van der Waals heterostructure of two-dimensional FM metal CrTe2 and ferroelectric (FE) In2Te3 monolayers. The ferromagnetism of CrTe2 is maintained in CrTe2/In2Te3 and its magnetic easy axis can be switched from in-plane to out-of-plane by reversing the FE polarization of In2Te3. Excitingly, we find that the Gilbert damping of CrTe2 is tunable when the FE polarization of In2Te3 is reversed from upward to downward. By analyzing the k-dependent contributions to the Gilbert damping, we unravel that such tunability results from the changed intersections between the bands of CrTe2 and Fermi level on the reversal of the FE polarizations of In2Te3 in CrTe2/In2Te3. Our work provides an appealing way to electrically tailor Gilbert dampings of two-dimensional FM metals by contacting them with ferroelectrics.Comment: 4 Figures, accepted by Applied Physics Letter

    Correction of narrow nostril deformity secondary to cleft lip: indications for different surgical methods and a retrospective study

    Get PDF
    BackgroundCleft lip and/or palate (CLP) can lead to severe nasolabial deformities that significantly affect the appearance of the patient. Among all types of nasolabial deformities, narrow nostril deformities are the most troublesome, causing poor and unstable surgical outcomes. The purpose of this study was to develop an algorithm for surgical method selection for revision of narrow nostril deformities secondary to CLP based on retrospective clinical data.Materials and methodsPatients with narrow nostril deformities secondary to CLP were enrolled in the study. Before surgery, patients' clinical data were collected and the width of the nasal floor and the length of the alar rim were measured. Surgical methods were determined according to the measurements. After surgery, a nostril retainer was applied for 6 months to consolidate and maintain the nostril shape. The surgical method and postsurgical changes were recorded for the final summary of the algorithm to select surgical methods for narrow nostril deformities.ResultsThe data from 9 patients were analyzed. According to the width of the nasal floor and the length of the alar rim, correct surgical methods were determined. Four patients received nasolabial skin flaps to widen the soft tissue of the nasal floor. Three patients received upper lip scar tissue flaps to treat the narrow nasal floor. For the short alar rim, free alar composite tissue flap or narrowing of the nostril of the noncleft side was recommended.ConclusionThe width of the nasal floor and the length of the alar rim are critical elements to consider when selecting the correct surgical method for revising narrow nostril deformities secondary to CLP. The proposed algorithm provides a reference for selecting surgical methods in future clinical practice

    Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells

    Full text link
    [EN] Methionine (Met) and arginine (Arg) regulate casein protein abundance through alterations in activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. A potential role for the circadian clock network on the regulation of protein synthesis, partly via activity of mTORC1, has been highlighted in non-ruminants. The main objective of the study was to determine in ruminant mammary cells alterations in mRNA, protein abundance and phosphorylation status of mTORC1-related upstream targets, circadian clock proteins, and protein kinase AMP-activated catalytic subunit alpha (AMPK) in relation to alpha-s1-casein protein (CSN1S1) abundance in response to greater supply of Met and Arg alone or in combination. Primary bovine mammary epithelial cells (BMEC) were incubated for 12 h in a 2 x 2 arrangement of treatments with control media (ideal profile of amino acids, IPAA), or media supplemented with increased Met (incMet), Arg (incArg), or both (incMet + incArg). Data were analyzed testing the main effects of Met and Arg and their interaction. Among 7 amino acid (AA) transporters known to be mTORC1 targets, increasing supply of Arg downregulated SLC1A5, SLC3A2, SLC7A1, and SLC7A5, while increasing supply of Met upregulated SLC7A1. mRNA abundance of the cytosolic Arg sensor (CASTOR1) was lower when supply of Arg and Met alone increased. p-TSC2 (TSC complex subunit 2) was greater when the Arg supply was increased, while the phosphoralation ratio of p-AKT (AKT serine/threonine kinase 1):total (t) AKT and p-AMPK:tAMPK were lower. In spite of this, the ratio of p-mTOR:tmTOR nearly doubled with incArg but such response did not prevent a decrease in CSN1S1 abundance. The abundance of period circadian regulator 1 (PER1) protein nearly doubled with all treatments, but only incMet + incArg led to greater clock circadian regulator (CLOCK) protein abundance. Overall, data suggest that a greater supply of Met and Arg could influence CSN1S1 synthesis of BMEC through changes in the mTORC1, circadian clock, and AMPK pathways. Identifying mechanistic relationships between intracellular energy, total AA supply, and these pathways in the context of milk protein synthesis in ruminants merits further research.L. Hu was recipient of a 2017 Yangzhou University International Academic Exchange award and a Postgraduate Research & Practice Innovation Program of Jiangsu Province (CX137) to train at University of Illinois. L. Hu and M. Wang were supported by project from Natural Science Foundation of China (31672446). H. Dai and Y. Liang received scholarships from China Scholarship Council (Beijing, China) to undertake PhD training at University of Illinois.Hu, L.; Chen, Y.; Cortes, IM.; Coleman, DN.; Dai, H.; Liang, Y.; Parys, C.... (2020). Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells. Food & Function. 11(1):883-894. https://doi.org/10.1039/c9fo02379hS883894111Rius, A. G., Appuhamy, J. A. D. R. N., Cyriac, J., Kirovski, D., Becvar, O., Escobar, J., … Hanigan, M. D. (2010). Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 93(7), 3114-3127. doi:10.3168/jds.2009-2743Moshel, Y., Rhoads, R. E., & Barash, I. (2006). Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. Journal of Cellular Biochemistry, 98(3), 685-700. doi:10.1002/jcb.20825Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., … Murphy, L. O. (2009). Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136(3), 521-534. doi:10.1016/j.cell.2008.11.044Appuhamy, J. A. D. R. N., Nayananjalie, W. A., England, E. M., Gerrard, D. E., Akers, R. M., & Hanigan, M. D. (2014). Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells. Journal of Dairy Science, 97(1), 419-429. doi:10.3168/jds.2013-7189HANIGAN, M. D., CROMPTON, L. A., BEQUETTE, B. J., MILLS, J. A. N., & FRANCE, J. (2002). Modelling Mammary Metabolism in the Dairy Cow to Predict Milk Constituent Yield, with Emphasis on Amino Acid Metabolism and Milk Protein Production: Model Evaluation. Journal of Theoretical Biology, 217(3), 311-330. doi:10.1006/jtbi.2002.3037Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2013). Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 96(10), 6248-6263. doi:10.3168/jds.2012-5790Weekes, T. L., Luimes, P. H., & Cant, J. P. (2006). Responses to Amino Acid Imbalances and Deficiencies in Lactating Dairy Cows. Journal of Dairy Science, 89(6), 2177-2187. doi:10.3168/jds.s0022-0302(06)72288-3Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., … Yin, Y. (2008). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-168. doi:10.1007/s00726-008-0210-yMepham, T. B. (1982). Amino Acid Utilization by Lactating Mammary Gland. Journal of Dairy Science, 65(2), 287-298. doi:10.3168/jds.s0022-0302(82)82191-7Haque, M. N., Rulquin, H., Andrade, A., Faverdin, P., Peyraud, J. L., & Lemosquet, S. (2012). Milk protein synthesis in response to the provision of an «ideal» amino acid profile at 2 levels of metabolizable protein supply in dairy cows. Journal of Dairy Science, 95(10), 5876-5887. doi:10.3168/jds.2011-5230H. Rulquin , G.Raggio , H.Lapierre and S.Lemosquet , Energy and Protein Metabolism and Nutrition , Wageningen Academic Publishers , Wageningen , 2007Nan, X., Bu, D., Li, X., Wang, J., Wei, H., Hu, H., … Loor, J. J. (2014). Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells. Physiological Genomics, 46(7), 268-275. doi:10.1152/physiolgenomics.00119.2013Fraser, D. L., Ørskov, E. R., Whitelaw, F. G., & Franklin, M. F. (1991). Limiting amino acids in dairy cows given casein as the sole source of protein. Livestock Production Science, 28(3), 235-252. doi:10.1016/0301-6226(91)90145-gDoepel, L., Pacheco, D., Kennelly, J. J., Hanigan, M. D., López, I. F., & Lapierre, H. (2004). Milk Protein Synthesis as a Function of Amino Acid Supply. Journal of Dairy Science, 87(5), 1279-1297. doi:10.3168/jds.s0022-0302(04)73278-6Haque, M. N., Rulquin, H., & Lemosquet, S. (2013). Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine. Journal of Dairy Science, 96(1), 420-430. doi:10.3168/jds.2012-5610Salama, A. A. K., Duque, M., Wang, L., Shahzad, K., Olivera, M., & Loor, J. J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. Journal of Dairy Science, 102(3), 2469-2480. doi:10.3168/jds.2018-15219Dong, X., Zhou, Z., Saremi, B., Helmbrecht, A., Wang, Z., & Loor, J. J. (2018). Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 101(2), 1708-1718. doi:10.3168/jds.2017-13351Deng, L., Jiang, C., Chen, L., Jin, J., Wei, J., Zhao, L., … Wang, P. (2015). The Ubiquitination of RagA GTPase by RNF152 Negatively Regulates mTORC1 Activation. Molecular Cell, 58(5), 804-818. doi:10.1016/j.molcel.2015.03.033Carroll, B., Maetzel, D., Maddocks, O. D., Otten, G., Ratcliff, M., Smith, G. R., … Korolchuk, V. I. (2016). Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. eLife, 5. doi:10.7554/elife.11058Wolfson, R. L., & Sabatini, D. M. (2017). The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metabolism, 26(2), 301-309. doi:10.1016/j.cmet.2017.07.001Wang, S., Tsun, Z.-Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., … Sabatini, D. M. (2015). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 347(6218), 188-194. doi:10.1126/science.1257132Wolfson, R. L., Chantranupong, L., Saxton, R. A., Shen, K., Scaria, S. M., Cantor, J. R., & Sabatini, D. M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 351(6268), 43-48. doi:10.1126/science.aab2674Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-Specific Changes in Molecular Clocks During the Transition from Pregnancy to Lactation in Mice1. Biology of Reproduction, 90(6). doi:10.1095/biolreprod.113.116137Lamia, K. A., Storch, K.-F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences, 105(39), 15172-15177. doi:10.1073/pnas.0806717105Cho, H., Zhao, X., Hatori, M., Yu, R. T., Barish, G. D., Lam, M. T., … Evans, R. M. (2012). Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 485(7396), 123-127. doi:10.1038/nature11048Vollmers, C., Schmitz, R. J., Nathanson, J., Yeo, G., Ecker, J. R., & Panda, S. (2012). Circadian Oscillations of Protein-Coding and Regulatory RNAs in a Highly Dynamic Mammalian Liver Epigenome. Cell Metabolism, 16(6), 833-845. doi:10.1016/j.cmet.2012.11.004Cao, R. (2018). mTOR Signaling, Translational Control, and the Circadian Clock. Frontiers in Genetics, 9. doi:10.3389/fgene.2018.00367Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., … Liu, A. C. (2018). mTOR signaling regulates central and peripheral circadian clock function. PLOS Genetics, 14(5), e1007369. doi:10.1371/journal.pgen.1007369Salfer, I. J., Dechow, C. D., & Harvatine, K. J. (2019). Annual rhythms of milk and milk fat and protein production in dairy cattle in the United States. Journal of Dairy Science, 102(1), 742-753. doi:10.3168/jds.2018-15040Li, S., Hosseini, A., Danes, M., Jacometo, C., Liu, J., & Loor, J. J. (2016). Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. Journal of Animal Science and Biotechnology, 7(1). doi:10.1186/s40104-016-0104-xVailati-Riboni, M., Xu, T., Qadir, B., Bucktrout, R., Parys, C., & Loor, J. J. (2019). In vitro methionine supplementation during lipopolysaccharide stimulation modulates immunometabolic gene network expression in isolated polymorphonuclear cells from lactating Holstein cows. Journal of Dairy Science, 102(9), 8343-8351. doi:10.3168/jds.2018-15737Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A., & Loor, J. J. (2009). Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92(9), 4276-4289. doi:10.3168/jds.2008-1932Dong, X., Zhou, Z., Wang, L., Saremi, B., Helmbrecht, A., Wang, Z., & Loor, J. J. (2018). Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 101(6), 5502-5514. doi:10.3168/jds.2017-13707Bionaz, M., & Loor, J. J. (2011). Gene Networks Driving Bovine Mammary Protein Synthesis during the Lactation cycle. Bioinformatics and Biology Insights, 5, BBI.S7003. doi:10.4137/bbi.s7003Zhou, Z., Vailati-Riboni, M., Trevisi, E., Drackley, J. K., Luchini, D. N., & Loor, J. J. (2016). Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. Journal of Dairy Science, 99(11), 8716-8732. doi:10.3168/jds.2015-10525National Research Council , Nutrient Requirements of Dairy Cattle , National Academies Press , Washington , 2001Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Zhou, Z., Ferdous, F., Montagner, P., Luchini, D. N., Corrêa, M. N., & Loor, J. J. (2018). Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Journal of Dairy Science, 101(11), 10374-10382. doi:10.3168/jds.2018-14972Vailati-Riboni, M., Zhou, Z., Jacometo, C. B., Minuti, A., Trevisi, E., Luchini, D. N., & Loor, J. J. (2017). Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. Journal of Dairy Science, 100(5), 3958-3968. doi:10.3168/jds.2016-11812Ma, Y. F., Batistel, F., Xu, T. L., Han, L. Q., Bucktrout, R., Liang, Y., … Loor, J. J. (2019). Phosphorylation of AKT serine/threonine kinase and abundance of milk protein synthesis gene networks in mammary tissue in response to supply of methionine in periparturient Holstein cows. Journal of Dairy Science, 102(5), 4264-4274. doi:10.3168/jds.2018-15451Reynolds, C. K., Harmon, D. L., & Cecava, M. J. (1994). Absorption and Delivery of Nutrients for Milk Protein Synthesis by Portal-Drained Viscera. Journal of Dairy Science, 77(9), 2787-2808. doi:10.3168/jds.s0022-0302(94)77220-9Bequette, B. J., Backwell, F. R. C., & Crompton, L. A. (1998). Current Concepts of Amino Acid and Protein Metabolism in the Mammary Gland of the Lactating Ruminant. Journal of Dairy Science, 81(9), 2540-2559. doi:10.3168/jds.s0022-0302(98)70147-xTaylor, P. M. (2013). Role of amino acid transporters in amino acid sensing. The American Journal of Clinical Nutrition, 99(1), 223S-230S. doi:10.3945/ajcn.113.070086Dai, H., Coleman, D. N., Hu, L., Martinez-Cortés, I., Wang, M., Parys, C., … Loor, J. J. (2020). Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. Journal of Dairy Science, 103(1), 676-689. doi:10.3168/jds.2019-16631Hatzoglou, M., Fernandez, J., Yaman, I., & Closs, E. (2004). REGULATION OF CATIONIC AMINO ACID TRANSPORT: The Story of the CAT-1 Transporter. Annual Review of Nutrition, 24(1), 377-399. doi:10.1146/annurev.nutr.23.011702.073120Fuchs, B. C., & Bode, B. P. (2005). Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Seminars in Cancer Biology, 15(4), 254-266. doi:10.1016/j.semcancer.2005.04.005Zheng, L., Zhang, W., Zhou, Y., Li, F., Wei, H., & Peng, J. (2016). Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1. International Journal of Molecular Sciences, 17(10), 1636. doi:10.3390/ijms17101636Suryawan, A. (2011). Regulation of protein synthesis by amino acids in muscle of neonates. Frontiers in Bioscience, 16(1), 1445. doi:10.2741/3798Averous, J., Lambert-Langlais, S., Mesclon, F., Carraro, V., Parry, L., Jousse, C., … Fafournoux, P. (2016). GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Scientific Reports, 6(1). doi:10.1038/srep27698Xia, J., Wang, R., Zhang, T., & Ding, J. (2016). Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling. Cell Discovery, 2(1). doi:10.1038/celldisc.2016.35Chantranupong, L., Scaria, S. M., Saxton, R. A., Gygi, M. P., Shen, K., Wyant, G. A., … Sabatini, D. M. (2016). The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 165(1), 153-164. doi:10.1016/j.cell.2016.02.035Cai, W., Wei, Y., Jarnik, M., Reich, J., & Lilly, M. A. (2016). The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function. PLOS Genetics, 12(5), e1006036. doi:10.1371/journal.pgen.1006036Shen, K., Huang, R. K., Brignole, E. J., Condon, K. J., Valenstein, M. L., Chantranupong, L., … Sabatini, D. M. (2018). Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature, 556(7699), 64-69. doi:10.1038/nature26158Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., & Sabatini, D. M. (2008). The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science, 320(5882), 1496-1501. doi:10.1126/science.1157535Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U., & Sabatini, D. M. (2016). Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature, 536(7615), 229-233. doi:10.1038/nature19079Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., … Guan, K.-L. (2006). TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell, 126(5), 955-968. doi:10.1016/j.cell.2006.06.055Huang, J., & Manning, B. D. (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochemical Journal, 412(2), 179-190. doi:10.1042/bj20080281Menon, S., Dibble, C. C., Talbott, G., Hoxhaj, G., Valvezan, A. J., Takahashi, H., … Manning, B. D. (2014). Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome. Cell, 156(4), 771-785. doi:10.1016/j.cell.2013.11.049Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J., & Cantley, L. C. (2002). Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 10(1), 151-162. doi:10.1016/s1097-2765(02)00568-3Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15-25. doi:10.1016/j.cmet.2004.12.003Inoki, K., Zhu, T., & Guan, K.-L. (2003). TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115(5), 577-590. doi:10.1016/s0092-8674(03)00929-2Hindupur, S. K., González, A., & Hall, M. N. (2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. Cold Spring Harbor Perspectives in Biology, 7(8), a019141. doi:10.1101/cshperspect.a019141Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., & Pandolfi, P. P. (2005). Phosphorylation and Functional Inactivation of TSC2 by Erk. Cell, 121(2), 179-193. doi:10.1016/j.cell.2005.02.031ROLFE, M., McLEOD, L. E., PRATT, P. F., & PROUD, C. G. (2005). Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochemical Journal, 388(3), 973-984. doi:10.1042/bj20041888Yang, J.-X., Wang, C.-H., Xu, Q.-B., Zhao, F.-Q., Liu, J.-X., & Liu, H.-Y. (2015). Methionyl-Methionine Promotes α-s1 Casein Synthesis in Bovine Mammary Gland Explants by Enhancing Intracellular Substrate Availability and Activating JAK2-STAT5 and mTOR-Mediated Signaling Pathways. The Journal of Nutrition, 145(8), 1748-1753. doi:10.3945/jn.114.208330Ko, C. H., & Takahashi, J. S. (2006). Molecular components of the mammalian circadian clock. Human Molecular Genetics, 15(suppl_2), R271-R277. doi:10.1093/hmg/ddl207Yagita, K., Tamanini, F., van der Horst, G. T. J., & Okamura, H. (2001). Molecular Mechanisms of the Biological Clock in Cultured Fibroblasts. Science, 292(5515), 278-281. doi:10.1126/science.1059542Preitner, N., Damiola, F., Luis-Lopez-Molina, Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The Orphan Nuclear Receptor REV-ERBα Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator. Cell, 110(2), 251-260. doi:10.1016/s0092-8674(02)00825-5Reinke, H., & Asher, G. (2019). Crosstalk between metabolism and circadian clocks. Nature Reviews Molecular Cell Biology, 20(4), 227-241. doi:10.1038/s41580-018-0096-9Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., … Schibler, U. (2000). Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling. Science, 289(5488), 2344-2347. doi:10.1126/science.289.5488.2344Lamia, K. A., Sachdeva, U. M., DiTacchio, L., Williams, E. C., Alvarez, J. G., Egan, D. F., … Evans, R. M. (2009). AMPK Regulates the Circadian Clock by Cryptochrome Phosphorylation and Degradation. Science, 326(5951), 437-440. doi:10.1126/science.1172156Zheng, X., & Sehgal, A. (2010). AKT and TOR Signaling Set the Pace of the Circadian Pacemaker. Current Biology, 20(13), 1203-1208. doi:10.1016/j.cub.2010.05.027Ye, R., Selby, C. P., Chiou, Y.-Y., Ozkan-Dagliyan, I., Gaddameedhi, S., & Sancar, A. (2014). Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes & Development, 28(18), 1989-1998. doi:10.1101/gad.249417.114Luciano, A. K., Zhou, W., Santana, J. M., Kyriakides, C., Velazquez, H., & Sessa, W. C. (2018). CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. Journal of Biological Chemistry, 293(23), 9126-9136. doi:10.1074/jbc.ra117.000773Dang, F., Sun, X., Ma, X., Wu, R., Zhang, D., Chen, Y., … L

    Single-Cell Rna Sequencing Deconvolutes the in Vivo Heterogeneity of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Get PDF
    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells that have a critical role in the maintenance of skeletal tissues such as bone, cartilage, and the fat in bone marrow. In addition to providing microenvironmental support for hematopoietic processes, BM-MSCs can differentiate into various mesodermal lineages including osteoblast/osteocyte, chondrocyte, and adipocyte that are crucial for bone metabolism. While BM-MSCs have high cell-to-cell heterogeneity in gene expression, the cell subtypes that contribute to this heterogeneity in vivo in humans have not been characterized. To investigate the transcriptional diversity of BM-MSCs, we applied single-cell RNA sequencing (scRNA-seq) on freshly isolated CD271+ BM-derived mononuclear cells (BM-MNCs) from two human subjects. We successfully identified LEPRhi CD45low BM-MSCs within the CD271+ BM-MNC population, and further codified the BM-MSCs into distinct subpopulations corresponding to the osteogenic, chondrogenic, and adipogenic differentiation trajectories, as well as terminal-stage quiescent cells. Biological functional annotations of the transcriptomes suggest that osteoblast precursors induce angiogenesis coupled with osteogenesis, and chondrocyte precursors have the potential to differentiate into myocytes. We also discovered transcripts for several clusters of differentiation (CD) markers that were either highly expressed (e.g., CD167b, CD91, CD130 and CD118) or absent (e.g., CD74, CD217, CD148 and CD68) in BM-MSCs, representing potential novel markers for human BM-MSC purification. This study is the first systematic in vivo dissection of human BM-MSCs cell subtypes at the single-cell resolution, revealing an insight into the extent of their cellular heterogeneity and roles in maintaining bone homeostasis

    Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling

    Get PDF
    Smoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway. We found that aberrant CHRNA7 expression can serve as an independent prognostic factor for ESCC patients. In multiple ESCC mouse models, dextromethorphan and metformin synergistically repressed nicotine-enhanced cancer-initiating cells (CIC) properties and inhibited ESCC progression. Mechanistically, dextromethorphan non-competitively inhibited nicotine binding to CHRNA7 while metformin downregulated CHRNA7 expression by antagonizing nicotine-induced promoter DNA hypomethylation of CHRNA7. Since dextromethorphan and metformin are two safe FDA-approved drugs with minimal undesirable side-effects, the combination of these drugs has a high potential as either a preventive and/or a therapeutic strategy against nicotine-promoted ESCC and perhaps other nicotine-sensitive cancer types as well

    Correction:Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling (Oncogene, (2021), 40, 11, (1974-1987), 10.1038/s41388-021-01682-z)

    Get PDF
    Only after the article was published online did the authors notice the misspelling of the second author’s name. It should be “Liang Du” instead of “Du Liang”. The authors sincerely apologize for any inconvenience this might have caused. The original article has been corrected
    corecore