179 research outputs found

    A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment

    Get PDF
    Plasmonic catalytic reactions of molecules with single amine or nitro groups have been investigated in recent years. However, plasmonic catalysis of molecules with multiple amine and/or nitro groups is still unknown. In this paper, plasmon-driven catalytic reactions of 4,4'-dinitroazobenzene (DNAB), 4,4'-diaminoazobenzene (DAAB) and 4-nitro-4'-aminoazobenzene (NAAB) are investigated using electrochemical surface-enhanced Raman scattering (SERS) spectroscopy. The results reveal that a plasmon-driven reduction reaction occurred for DNAB and NAAB in which the NO 2 group was reduced to NH 2, while the plasmon-driven oxidation reaction of NH 2 did not occur. This result demonstrates that plasmon-driven reduction reactions are much easier than plasmon-driven oxidization reactions in electrochemical environments. The molecular resonance may also play an important role in plasmon-driven catalytic reactions. These findings provide us with a deeper understanding of plasmon-driven catalytic reactions

    Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions

    Get PDF
    Plasmonics is a well-established field, exploiting the interaction of light and metals at the nanoscale; with the help of surface plasmon polaritons, remote-excitation can also be observed by using silver or gold plasmonic waveguides. Recently, plasmonic catalysis was established as a new exciting platform for heterogeneous catalytic reactions. Recent reports present remote-excitation surface catalytic reactions as a route to enhance the rate of chemical reactions, and offer a pathway to control surface catalytic reactions. In this review, we focus on recent advanced reports on silver plasmonic waveguide for remote-excitation surface catalytic reactions. First, the synthesis methods and characterization techniques of sivelr nanowire plasmonic waveguides are summarized, and the properties and physical mechanisms of plasmonic waveguides are presented in detail. Then, the applications of plasmonic waveguides including remote excitation fluorescence and SERS are introduced, and we focus on the field of remote-excitation surface catalytic reactions. Finally, forecasts are made for possible future applications for the remote-excitation surface catalysis by plasmonic waveguides in living cells

    How Extreme Events in China Would Be Affected by Global Warming-Insights From a Bias-Corrected CMIP6 Ensemble

    Get PDF
    In recent years, concurrent climate extreme conditions (i.e., hot-dry, cold-dry, hot-wet, and cold-wet) have led to various unprecedented natural disasters (e.g., floods, landslide, wildfire, droughts, etc.), causing significant damages to human societies and ecosystems. This is especially true for China where many unprecedented natural disasters have been reported due to the recent warming in local climate. In this paper, we focus on the issue of ultra-extreme events (1‰ threshold) and address how future global warming would affect the climate extreme conditions in China. Specifically, to reduce the uncertainties from models, we use a downscaled and bias-corrected CMIP6 ensemble under two continuously-warming scenarios to evaluate the impact of global warming on ultra-extreme events over China. The results show that, under both SSP245 and SSP585 scenarios, extreme hot conditions would become dominant in most regions of China and some regions are likely to experience over 50 extreme hot days at future warming levels. The frequency of extreme cold events is projected to be small. More frequent extreme hot-wet events with concurrence in the same month and year would be expected for China under the continuously-warming scenarios. This is particularly obvious for the west where more than 6 hot-wet months are likely to take place under future warming scenarios. This may imply that more extreme heat waves and flooding events would coincide in the same month or year for China in the future. For univariate ultra-extreme events, both extreme hot events and extreme wet events would drop by above 25% from 2.0°C to 1.5°C global warming level, particularly under the SSP245 scenario. When the global mean temperature is limited to 1.5°C rather than 2°C, the avoided impacts of hot-wet and cold-wet extremes concurring in the same month will be larger than those of dry-related compound extremes. Overall, the results suggest that slowing down global warming can reduce the frequency of concurrent climate extreme conditions in China, highlighting the importance of immediate action toward carbon emission reduction

    Comparative Studies on the Polymorphism and Copy Number Variation of mtSSU rDNA in Ciliates (Protista, Ciliophora): Implications for Phylogenetic, Environmental, and Ecological Research

    Get PDF
    While nuclear small subunit ribosomal DNA (nSSU rDNA) is the most commonly‐used gene marker in studying phylogeny, ecology, abundance, and biodiversity of microbial eukaryotes, mitochondrial small subunit ribosomal DNA (mtSSU rDNA) provides an alternative. Recently, both copy number variation and sequence variation of nSSU rDNA have been demonstrated for diverse organisms, which can contribute to misinterpretation of microbiome data. Given this, we explore patterns for mtSSU rDNA among 13 selected ciliates (representing five classes), a major component of microbial eukaryotes, estimating copy number and sequence variation and comparing to that of nSSU rDNA. Our study reveals: (1) mtSSU rDNA copy number variation is substantially lower than that for nSSU rDNA; (2) mtSSU rDNA copy number ranges from 1.0 × 10 to 8.1 × 10 ; (3) a most common sequence of mtSSU rDNA is also found in each cell; (4) the sequence variation of mtSSU rDNA are mainly indels in poly A/T regions, and only half of species have sequence variation, which is fewer than that for nSSU rDNA; and (5) the polymorphisms between haplotypes of mtSSU rDNA would not influence the phylogenetic topology. Together, these data provide more insights into mtSSU rDNA as a powerful marker especially for microbial ecology studies. 4

    Multi-output prediction of dose–response curves enables drug repositioning and biomarker discovery

    Get PDF
    Drug response prediction is hampered by uncertainty in the measures of response and selection of doses. In this study, we propose a probabilistic multi-output model to simultaneously predict all dose–responses and uncover their biomarkers. By describing the relationship between genomic features and chemical properties to every response at every dose, our multi-output Gaussian Process (MOGP) models enable assessment of drug efficacy using any dose–response metric. This approach was tested across two drug screening studies and ten cancer types. Kullback-leibler divergence measured the importance of each feature and identified EZH2 gene as a novel biomarker of BRAF inhibitor response. We demonstrate the effectiveness of our MOGP models in accurately predicting dose–responses in different cancer types and when there is a limited number of drug screening experiments for training. Our findings highlight the potential of MOGP models in enhancing drug development pipelines by reducing data requirements and improving precision in dose–response predictions

    Isolation of a 2-picolinic acid-assimilating bacterium and its proposed degradation pathway

    Get PDF
    Burkholderia sp. ZD1, aerobically utilizes 2-picolinic acid as a source of carbon, nitrogen and energy, was isolated. ZD1 completely degraded 2-picolinic acid when the initial concentrations ranged from 25 to 300 mg/L. Specific growth rate (μ) and specific consumption rate (q) increased continually in the concentration range of 25–100 mg/L, and then declined. Based on the Haldane model and Andrew’s model, μmax and qmax were calculated as 3.9 and 16.5 h−1, respectively. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the main intermediates in the degradation pathway. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was innovatively used to deduce the ring cleavage mechanism of N-heterocycle of 2-picolinic acid. To our knowledge, this is the first report on not only the utilization of 2-picolinic acid by a Burkholderia sp., but also applying FT-ICR-MS and ATR-FTIR for exploring the biodegradation pathway of organic compounds
    corecore