30 research outputs found

    C\u3csub\u3e60\u3c/sub\u3e fullerenes disrupt cellular signalling leading to TRPC4 and TRPC6 channels opening by the activation of muscarinic receptors and G-proteins in small intestinal smooth muscles

    Get PDF
    © 2017 The effect of water-soluble pristine C60 fullerene nanoparticles (C60NPs) on receptor-operated cation channels formed by TRPC4/C6 proteins in ileal smooth muscle cells was investigated for the first time. Activation of these channels subsequent to acetylcholine binding to the expressed in these cells M2 and M3 muscarinic receptors represents the key event in the parasympathetic control of gastrointestinal smooth muscle motility and cholinergic excitation-contraction coupling. Experiments were performed on single collagenase-dispersed mouse ileal myocytes using patch-clamp techniques with symmetrical 125 mM Cs+ solutions and [Ca2 +]i ‘clamped’ at 100 nM in order to isolate the muscarinic cation current (mICAT). The current was induced by intracellular infusion of 200 μM GTPγS, which activates G-proteins directly, i.e. bypassing the muscarinic receptors. C60NPs applied at 10− 6 M at peak response to activation of G-proteins caused mICAT inhibition by 47.0 ± 3.5% (n = 9). The inhibition developed rather slowly, with the time constant of 119 ± 16 s, was voltage-independent and irreversible. Thus, C60NPs are unlikely to cause any direct block of TRPC4/C6 channels; rather, they may accumulate in the membrane and disrupt G-protein signalling leading to mICAT generation. C60NPs may represent a novel class of biocompatible molecules for the treatment of disorders associated with enhanced gastrointestinal motility

    C60 fullerene against SARS-CoV-2 coronavirus: an in silico insight

    Get PDF
    Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can’t perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease

    Vlijanie C60-fullerena na dinamiku ustalostnych processov v kambalovidnoj myšce krysy posle išemii-reperfuzii

    Get PDF
    Effect of pristine C60 fullerene aqueous colloid solution (C60FAS; 1 mg/kg dose) on the dynamics of fatigue processes in rat soleus muscle after ischemia-reperfusion injury using the tensiometric method was studied. Experiments were conducted during the first 5 h and for 5 days after ischemia. The changes in maximal strength of muscle contraction and its level of generation between the beginning and end of stimulated irritation after intravenous and intramuscular administration of C60FAS unmodified fullerene aqueous colloid solution were analyzed. The pronounced protective effect of this drug on the dynamics of skeletal muscle contraction was first determined. Protective effect of C60FAS unmodified fullerene aqueous colloid solution relative to changes in the levels of muscle contraction strength generation between the beginning and end of stimulated irritation was 15% in the first 5 h after ischemia and increased to 92% on the 5th day of the experiment. In such a case, the intravenous therapeutic administration of C60 fullerene aqueous colloid solution was the most optimal: the protective effect was 67% versus 49% under intramuscular administration. Thus, the development of biomedical nanotechnology with the application of pristine C60 unmodified fullerene as a strong antioxidant opens up new possibilities in prevention and treatment of ischemic injury in the skeletal muscles

    Toxic effect of C60 fullerene-doxorubicin complex towards tumor and normal cells in vitro

    Get PDF
    Creation of new nanostructures possessing high antitumor activity is an important problem of modern biotechnology. Aim. To evaluate cytotoxicity of created complex of pristine C60 fullerene with the anthracycline antibiotic doxorubicin (Dox), as well as of free C60 fullerene and Dox, towards different cell types – tumor, normal immunocompetent and hepatocytes. Methods. Measurement of size distribution for particles in C60 + Dox mixture was performed by a dynamic light scattering (DLS) technique. Toxic effect of C60 + Dox complex in vitro towards tumor and normal cells was studied using the MTT assay. Results. DLS experiment demonstrated that the main fraction of the particles in C60 + Dox mixture had a diameter in the range of about 132 nm. The toxic effect of C60 + Dox complex towards normal (lymphocytes, macrophages, hepatocytes) and tumor (Ehrlich ascites carcinoma, leukemia L1210, Lewis lung carcinoma) cells was decreased by ~10–16 % and ~7–9 %, accordingly, compared with the same effect of free Dox. Conclusions. The created C60 + Dox composite may be considered as a new pharmacological agent that kills effectively tumor cells in vitro and simultaneously prevents a toxic effect of the free form of Dox on normal cells

    C\u3csub\u3e60\u3c/sub\u3e fullerenes selectively inhibit BK\u3csub\u3eCa\u3c/sub\u3e but not K\u3csub\u3ev\u3c/sub\u3e channels in pulmonary artery smooth muscle cells

    Get PDF
    © 2019 Elsevier Inc. Possessing unique physical and chemical properties, C60 fullerenes are arising as a potential nanotechnological tool that can strongly affect various biological processes. Recent molecular modeling studies have shown that C60 fullerenes can interact with ion channels, but there is lack of data about possible effects of C60 molecule on ion channels expressed in smooth muscle cells (SMC). Here we show both computationally and experimentally that water-soluble pristine C60 fullerene strongly inhibits the large conductance Ca2+-dependent K+ (BKCa), but not voltage-gated K+ (Kv) channels in pulmonary artery SMC. Both molecular docking simulations and analysis of single channel activity indicate that C60 fullerene blocks BKCa channel pore in its open state. In functional tests, C60 fullerene enhanced phenylephrine-induced contraction of pulmonary artery rings by about 25% and reduced endothelium-dependent acetylcholine-induced relaxation by up to 40%. These findings suggest a novel strategy for biomedical application of water-soluble pristine C60 fullerene in vascular dysfunction

    C60 fullerenes increase the intensity of rotational movements in non-anesthetized hemiparkinsonic rats

    Get PDF
    The effect of C60 fullerene aqueous colloid solution (C60FAS) on the intensity of long-lasting (persisting for one hour) rotational movements in non-anesthetized rats was investigated. For this purpose, an experimental hemiparkinsonic animal model was used in the study. Rotational movements in hemiparkinsonic animals were initiated by the intraperitoneal administration of the dopamine receptor agonist apomorphine. It was shown that a preliminary injection of C60FAS (a substance with powerful antioxidant properties) in hemiparkinsonic rats induced distinct changes in animal motor behavior. It was revealed that fullerene-pretreated animals, in comparison with non-pretreated or vehicle-pretreated rats, rotated for 1 h at an approximately identical speed until the end of the experiment, whereas the rotation speed of control rats gradually decreased to 20–30% of the initial value. One can assume that the observed changes in the movement dynamics of the hemiparkinsonic rats after C60FAS pretreatment presumably can be induced by the influence of C60FAS on the dopaminergic system, although the isolated potentiation of the action of apomorphine C60FAS cannot be excluded. Nevertheless, earlier data on the action of C60FAS on muscle dynamics has suggested that C60FAS can activate a protective action of the antioxidant system in response to long-lasting muscular activity and that the antioxidant system in turn may directly decrease fatigue-related changes during long-lasting muscular activity

    Effect of fullerene C60 on ATPase activity and superprecipitation of skeletal muscle actomyosin: Vplyv fulerenu C60 na ATPaznu aktyvnistʹ ta superprecypitaciju aktomiozynu skeletnych mʹjaziv

    Get PDF
    Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60

    C60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro: Fuleren C60 zapobigaje genotoksyčnij diï doksorubicynu na limfocyty ljudyny in vitro

    Get PDF
    The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox) was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application

    Determination of equilibrium constant of C60 fullerene binding with drug molecules

    Get PDF
    We report a new analytical method that allows the determination of the magnitude of the equilibrium constant of complexation, Kh, of small molecules to C60 fullerene in aqueous solution. The developed method is based on the up-scaled model of C60 fullerene-ligand complexation and contains the full set of equations needed to fit titration datasets arising from different experimental methods (UV-Vis spectroscopy, 1H NMR spectroscopy, diffusion ordered NMR spectroscopy, DLS). The up-scaled model takes into consideration the specificity of C60 fullerene aggregation in aqueous solution and allows the highly dispersed nature of C60 fullerene cluster distribution to be accounted for. It also takes into consideration the complexity of fullerene-ligand dynamic equilibrium in solution, formed by various types of self- and hetero-complexes. These features make the suggested method superior to standard Langmuir-type analysis, the approach used to date for obtaining quantitative information on ligand binding with different nanoparticles
    corecore