8 research outputs found

    Lipidomic Analysis of Oxidized Fatty Acids in Plant and Algae Oils

    Get PDF
    Linoleic acid (LA) and α-linolenic acid (ALA) in plant or algae oils are precursors to oxidized fatty acid metabolites known as oxylipins. Liquid chromatography tandem mass spectrometry was used to quantify oxylipins in soybean, corn, olive, canola, and four high-oleic acid algae oils at room temperature or after heating for 10 min at 100 °C. Flaxseed oil oxylipin concentrations were determined in a follow-up experiment that compared it to soybean, canola, corn, and olive oil. Published consumption data for soybean, canola, corn, and olive oil were used to estimate daily oxylipin intake. The LA and ALA fatty acid composition of the oils was generally related to their respective oxylipin metabolites, except for olive and flaxseed oil, which had higher LA derived monohydroxy and ketone oxylipins than other oils, despite their low LA content. Algae oils had the least amount of oxylipins. The change in oxylipin concentrations was not significantly different among the oils after short-term heating. The estimated oxylipin intake from nonheated soybean, canola, corn, and olive oil was 1.1 mg per person per day. These findings suggest that oils represent a dietary source of LA and ALA derived oxylipins and that the response of oils to short-term heating does not differ among the various oils

    Toddaculin, Isolated from of <i>Toddalia asiatica</i> (L.) Lam., Inhibited Osteoclastogenesis in RAW 264 Cells and Enhanced Osteoblastogenesis in MC3T3-E1 Cells

    No full text
    <div><p>Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. <i>Toddalia asiatica</i> (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from <i>Toddalia asiatica</i> (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.</p></div

    Effect of toddaculin on osteoclastogenesis.

    No full text
    <p>Chemical structure of toddaculin (A) and its effect on TRAP activity in RANKL-treated RAW 264 cells (B). Values are expressed as means ± SEM (n = 3). *, <i>P</i> < 0.05 compared with control. Light microscopic analysis of osteoclast formation is shown in (C). Arrows show multi-nucleated cells. Each picture is representative of at least triplicate analyses.</p
    corecore