6 research outputs found

    The Effect of Changing the Contraction Mode During Resistance Training on mTORC1 Signaling and Muscle Protein Synthesis

    Get PDF
    Acute resistance exercise (RE) increases muscle protein synthesis (MPS) via activation of mechanistic target of rapamycin complex (mTORC), and chronic resistance exercise training (RT) results in skeletal muscle hypertrophy. Although MPS in response to RE is blunted over time during RT, no effective restorative strategy has been identified. Since eccentric muscle contraction (EC) has the potential to strongly stimulate mTORC1 activation and MPS, changing the muscle contraction mode to EC might maintain the MPS response to RE during chronic RT. Male rats were randomly divided into RE (1 bout of RE) and RT (13 bouts of RE) groups. Additionally, each group was subdivided into isometric contraction (IC) and EC subgroups. The RE groups performed acute, unilateral RE using IC or EC. The RT groups performed 12 bouts of unilateral RE using IC. For bout 13, the RT-IC subgroup performed a further IC bout, while the RT-EC subgroup changed to EC. All muscle contractions were induced by percutaneous electrical stimulation. Muscle samples were obtained at 6 h post exercise in all groups. After the 1st RE bout, the EC group showed significantly higher p70S6K Thr389 phosphorylation than the IC group. However, the phosphorylation of other mTORC1-associated proteins (4E-BP1 and ribosomal protein S6) and the MPS response did not differ between the contraction modes. After the 13th bout of RE, mTORC1 activation and the MPS response were significantly blunted as compared with the 1st bout of RE. Changing from IC to EC did not improve these responses. In conclusion, changing the contraction mode to EC does not reinvigorate the blunted mTORC1 activation and MPS in response to RE during chronic RT

    A Surrogate Animal Model for Screening of Ebola and Marburg Glycoprotein-Targeting Drugs Using Pseudotyped Vesicular Stomatitis Viruses

    No full text
    Filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates with high mortality rates. There is no approved therapy against these deadly viruses. Antiviral drug development has been hampered by the requirement of a biosafety level (BSL)-4 facility to handle infectious EBOV and MARV because of their high pathogenicity to humans. In this study, we aimed to establish a surrogate animal model that can be used for anti-EBOV and -MARV drug screening under BSL-2 conditions by focusing on the replication-competent recombinant vesicular stomatitis virus (rVSV) pseudotyped with the envelope glycoprotein (GP) of EBOV (rVSV/EBOV) and MARV (rVSV/MARV), which has been investigated as vaccine candidates and thus widely used in BSL-2 laboratories. We first inoculated mice, rats, and hamsters intraperitoneally with rVSV/EBOV and found that only hamsters showed disease signs and succumbed within 4 days post-infection. Infection with rVSV/MARV also caused lethal infection in hamsters. Both rVSV/EBOV and rVSV/MARV were detected at high titers in multiple organs including the liver, spleen, kidney, and lungs of infected hamsters, indicating acute and systemic infection resulting in fatal outcomes. Therapeutic effects of passive immunization with an anti-EBOV neutralizing antibody were specifically observed in rVSV/EBOV-infected hamsters. Thus, this animal model is expected to be a useful tool to facilitate in vivo screening of anti-filovirus drugs targeting the GP molecule

    Genetic and antigenic characterization of H5 and H7 avian influenza viruses isolated from migratory waterfowl in Mongolia from 2017 to 2019

    Get PDF
    The circulation of highly pathogenic avian influenza viruses (HPAIVs) of various subtypes (e.g., H5N1, H5N6, H5N8, and H7N9) in poultry remains a global concern for animal and public health. Migratory waterfowls play important roles in the transmission of these viruses across countries. To monitor virus spread by wild birds, active surveillance for avian influenza in migratory waterfowl was conducted in Mongolia from 2015 to 2019. In total, 5000 fecal samples were collected from lakesides in central Mongolia, and 167 influenza A viruses were isolated. Two H5N3, four H7N3, and two H7N7 viruses were characterized in this study. The amino acid sequence at hemagglutinin (HA) cleavage site of those isolates suggested low pathogenicity in chickens. Phylogenetic analysis revealed that all H5 and H7 viruses were closely related to recent H5 and H7 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds in Asia and Europe. Antigenicity of H7Nx was similar to those of typical non-pathogenic avian influenza viruses (AIVs). While HPAIVs or A/Anhui/1/2013 (H7N9)-related LPAIVs were not detected in migratory waterfowl in Mongolia, sporadic introductions of AIVs including H5 and H7 viruses into Mongolia through the wild bird migration were identified. Thus, continued monitoring of H5 and H7 AIVs in both domestic and wild birds is needed for the early detection of HPAIVs spread into the country

    A novel macrolide–Del-1 axis to regenerate bone in old age

    No full text
    Summary: Aging is associated with increased susceptibility to chronic inflammatory bone loss disorders, such as periodontitis, in large part due to the impaired regenerative potential of aging tissues. DEL-1 exerts osteogenic activity and promotes bone regeneration. However, DEL-1 expression declines with age. Here we show that systemically administered macrolide antibiotics and a non-antibiotic erythromycin derivative, EM-523, restore DEL-1 expression in 18-month-old (“aged”) mice while promoting regeneration of bone lost due to naturally occurring age-related periodontitis. These compounds failed to induce bone regeneration in age-matched DEL-1-deficient mice. Consequently, these drugs promoted DEL-1-dependent functions, including alkaline phosphatase activity and osteogenic gene expression in the periodontal tissue while inhibiting osteoclastogenesis, leading to net bone growth. Macrolide-treated aged mice exhibited increased skeletal bone mass, suggesting that this treatment may be pertinent to systemic bone loss disorders. In conclusion, we identified a macrolide–DEL-1 axis that can regenerate bone lost due to aging-related disease
    corecore