94 research outputs found

    Magnetic field dependence of the critical current in stacked Josephson junctions. Evidence for fluxon modes in Bi2Sr2CaCu2O8+x mesas

    Full text link
    Modulation of the critical current across layers, Ic(H), of stacked Josephson junctions (SJJs) as a function of an applied magnetic field parallel to the junction planes is studied theoretically and experimentally for different junction lengths and coupling parameters. It is shown that the Ic(H) patterns of long SJJs are very complicated without periodicity in H. This is due to interaction between junctions in the stack. This, in turn, gives rise to the existence of multiple quasi-equilibrium Josephson fluxon modes and submodes which are different with respect to the symmetry of the phase and the fluxon sequence in SJJs. The critical current of long SJJs is multiple valued and is governed by switching between energetically close fluxon modes/submodes. Due to this, the probability distribution of the critical current may become wide and may consist of multiple maxima each representing a particular mode/submode. Experimentally, multiple branched Ic(H) patterns and multiple maxima in the Ic probability distribution were observed for Bi2Sr2CaCu2O8+x intrinsic SJJs, which are in a good agreement with numerical simulations and support the idea of having different quasi-equilibrium fluxon modes/submodes in intrinsic SJJs.Comment: 5 pages, 5 figure

    Nonequilibrium effects due to charge fluctuations in intrinsic Josephson systems

    Full text link
    Nonequilibrium effects in layered superconductors forming a stack of intrinsic Josephson junctions are investigated. We discuss two basic nonequilibrium effects caused by charge fluctuations on the superconducting layers: a) the shift of the chemical potential of the condensate and b) charge imbalance of quasi-particles, and study their influence on IV-curves and the position of Shapiro steps.Comment: 17 pages, 2 figures, revised version slightly shortene

    Measurements of weak localization of graphene in inhomogeneous magnetic fields

    Get PDF
    Weak localization in graphene is studied in inhomogeneous magnetic fields. To generate the inhomogeneous field, a thin film of type-II superconducting niobium is put in close proximity to graphene. A deviation from the ordinary quadratic weak localization behavior is observed at low fields. We attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements of graphene

    Intrinsic tunneling spectra of Bi_2(Sr_{2-x}La_x)CuO_6

    Full text link
    We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi_2Sr_{2-x}La_xCuO_{6+\delta} (Bi2201-La_x). Despite a difference of a factor of three in the optimal superconducting critical temperatures for Bi2201-La_{0.4} and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T*\approx 230-300K for both compounds. We find also that in Bi2201-La_x, PG humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.Comment: Submitted to Phys. Rev. Let

    Collective resonance modes of Josephson vortices in sandwiched stack of Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} intrinsic Josephson junctions

    Full text link
    We observed splitting of the low-bias vortex-flow branch in a dense-Josephson-vortex state into multiple sub-branches in current-voltage characteristics of intrinsic Josephson junctions (IJJs) of Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} single crystals in the long-junction limit. Each sub-branch corresponds to a plasma mode in serially coupled Josephson junctions. Splitting into low-bias linear sub-branches with a spread in the slopes and the inter-sub-branch mode-switching character are in good quantitative agreement with the prediction of the weak but finite inter-junction capacitive-coupling model incorporated with the inductive coupling. This suggests the importance of the role of the capacitive coupling in accurately describing the vortex dynamics in serially stacked IJJs.Comment: 4 pages, 3 figures, 1 tabl

    Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride

    Get PDF
    Large-area uniform carbon films with graphene-like properties are synthesized by chemical vapor deposition directly on Si3N4/Si at 1000 degrees C without metal catalysts. The as deposited films are atomically thin and wrinkle- and pinhole-free. The film thickness can be controlled by modifying the growth conditions. Raman spectroscopy confirms the sp(2) graphitic structures. The films show ohmic behavior with a sheet resistance of similar to 2.3-10.5 k Omega/square at room temperature. An electric field effect of similar to 2-10% (V-G=-20 V) is observed. The growth is explained by the self-assembly of carbon clusters from hydrocarbon pyrolysis. The scalable and transfer-free technique favors the application of graphene as transparent electrodes
    corecore