111 research outputs found
Magnetic field dependence of the critical current in stacked Josephson junctions. Evidence for fluxon modes in Bi2Sr2CaCu2O8+x mesas
Modulation of the critical current across layers, Ic(H), of stacked Josephson
junctions (SJJs) as a function of an applied magnetic field parallel to the
junction planes is studied theoretically and experimentally for different
junction lengths and coupling parameters. It is shown that the Ic(H) patterns
of long SJJs are very complicated without periodicity in H. This is due to
interaction between junctions in the stack. This, in turn, gives rise to the
existence of multiple quasi-equilibrium Josephson fluxon modes and submodes
which are different with respect to the symmetry of the phase and the fluxon
sequence in SJJs. The critical current of long SJJs is multiple valued and is
governed by switching between energetically close fluxon modes/submodes. Due to
this, the probability distribution of the critical current may become wide and
may consist of multiple maxima each representing a particular mode/submode.
Experimentally, multiple branched Ic(H) patterns and multiple maxima in the Ic
probability distribution were observed for Bi2Sr2CaCu2O8+x intrinsic SJJs,
which are in a good agreement with numerical simulations and support the idea
of having different quasi-equilibrium fluxon modes/submodes in intrinsic SJJs.Comment: 5 pages, 5 figure
Nonequilibrium effects due to charge fluctuations in intrinsic Josephson systems
Nonequilibrium effects in layered superconductors forming a stack of
intrinsic Josephson junctions are investigated. We discuss two basic
nonequilibrium effects caused by charge fluctuations on the superconducting
layers: a) the shift of the chemical potential of the condensate and b) charge
imbalance of quasi-particles, and study their influence on IV-curves and the
position of Shapiro steps.Comment: 17 pages, 2 figures, revised version slightly shortene
Measurements of weak localization of graphene in inhomogeneous magnetic fields
Weak localization in graphene is studied in inhomogeneous magnetic fields. To generate the inhomogeneous field, a thin film of type-II superconducting niobium is put in close proximity to graphene. A deviation from the ordinary quadratic weak localization behavior is observed at low fields. We attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements of graphene
Pseudo-gap features of intrinsic tunneling in (HgBr_2)-Bi2212 single crystals
The c-axis tunneling properties of both pristine Bi2212 and its HgBr
intercalate have been measured in the temperature range 4.2 - 250 K.
Lithographically patterned 7-10 unit-cell heigh mesa structures on the surfaces
of these single crystals were investigated. Clear SIS-like tunneling curves for
current applied in the -axis direction have been observed. The dynamic
conductance dd shows both sharp peaks corresponding to a
superconducting gap edge and a dip feature beyond the gap, followed by a wide
maximum, which persists up to a room temperature. Shape of the temperature
dependence of the {\it c}-axis resistance does not change after the
intercalation suggesting that a coupling between -bilayers has
little effect on the pseudogap.Comment: 6 pages, 5 figures; presented at the Second Int Conf. New3Sc-1999
(Las Vegas, NV
A single intrinsic Josephson junction with double-sided fabrication technique
We make stacks of intrinsic Josephson junctions (IJJs) imbedded in the bulk
of very thin (~nm) single crystals.
By precisely controlling the etching depth during the double-sided fabrication
process, the stacks can be reproducibly tailor-made to be of any microscopic
height (), i.e. enclosing a specified number of IJJ (0-6),
including the important case of a single junction. We discuss reproducible
gap-like features in the current-voltage characteristics of the samples at high
bias.Comment: 3 pages, 4 figures, to be published in APL May. 2
Intrinsic tunneling spectra of Bi_2(Sr_{2-x}La_x)CuO_6
We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped
Bi_2Sr_{2-x}La_xCuO_{6+\delta} (Bi2201-La_x). Despite a difference of a factor
of three in the optimal superconducting critical temperatures for
Bi2201-La_{0.4} and Bi2212 (32 and 95 K, respectively) and different spectral
energy scales, we find that the pseudogap vanishes at a similar characteristic
temperature T*\approx 230-300K for both compounds. We find also that in
Bi2201-La_x, PG humps are seen as sharp peaks and, in fact, even dominate the
intrinsic spectra.Comment: Submitted to Phys. Rev. Let
- …