305 research outputs found

    Comparison of Job Satisfaction Prediction Models for Construction Workers: CART vs. Neural Network

    Get PDF
    To establish a suitable prediction model of construction workers\u27 job satisfaction, this study chooses the widely used models CART (Classification and Regression Tree) and NN (Neural network) in the prediction model to make a comparison and finds out the main influencing factors of construction workers\u27 job satisfaction in occupational health and safety training. Through the investigation and analysis of 280 cases of empirical data, it is found that the CART model based on Kappa value and Accuracy of categorical variables have a better prediction effect, and the main factors affecting job satisfaction are job categories, working days per week and the latest training time. The main innovation of this paper is to add the actual value set of empirical data on the basis of the usual training set, verification set, test set and prediction set, and draw a conclusion by comparing the predicted value with the actual value of kappa

    Royal jelly promotes DAF-16-mediated proteostasis to tolerate β-amyloid toxicity in C. elegans model of Alzheimer’s disease

    Get PDF
    Numerous studies have demonstrated that dietary intervention may promote health and help prevent Alzheimer\u27s disease (AD). We recently reported that bee products of royal jelly (RJ) and enzyme-treated royal jelly (eRJ) were potent to promote healthy aging in C. elegans. Here, we examined whether RJ/eRJ consumption may benefit to mitigate the AD symptom in the disease model of C. elegans. Our results showed that RJ/eRJ supplementation significantly delayed the body paralysis in AD worms, suggesting the β-amyloid (Aβ) toxicity attenuation effects of RJ/eRJ. Genetic analyses suggested that RJ/eRJ-mediated alleviation of Aβ toxicity in AD worms required DAF-16, rather than HSF-1 and SKN-1, in an insulin/IGF signaling dependent manner. Moreover, RJ/eRJ modulated the transactivity of DAF-16 and dramatically improved the protein solubility in aged worms. Given protein solubility is a hallmark of healthy proteostasis, our findings demonstrated that RJ/eRJ supplementation improved proteostasis, and this promotion depended on the transactivity of DAF-16. Collectively, the present study not only elucidated the possible anti-AD mechanism of RJ/eRJ, but also provided evidence from a practical point of view to shed light on the extensive correlation of proteostasis and the prevention of neurodegenerative disorders

    Reversal Effects of Probiotic Supplementation on a High Glucose Diet in Caenorhabditis elegans Model

    Get PDF
    TheWestern Diet refers to a diet rich in refined sugars. With an increasing glycemic index observed in Western society, it comes to no surprise that obesity, diabetes, and heart disease are on the rise. Shortened lifespan and increased susceptibility to pathogens are associated with these diseases and linked to increased consumption of foods high in sugar. Therefore, the benefits probiotics have on restoration of shortened lifespan induced by a high glucose diet, and the benefits of probiotics supplementation in combination of cranberry extracts in the model system Caenorhabditis elegans were investigated. By targeting the homologous pathways with humans, C. elegans provides an economical model system with application in humans. Here, we investigated the effects probiotics have on high glucose diet in C. elegans. Consistent with previous studies, when C. elegans was supplemented with each probiotic strain, lifespan was extended. Interestingly, the reversal of glucose induced shortened lifespan and the extension of lifespan in combination with cranberry extracts was strain dependent. The impact that probiotics have on the reversal of detrimental effects associated with a high glucose diet, including protection against known pathogens and pathway targets, is under investigation

    Water-soluble cranberry extract inhibits \u3ci\u3eVibrio cholerae\u3c/i\u3e biofilm formation possibly through modulating the second messenger 3’, 5’ - Cyclic diguanylate level

    Get PDF
    Quorum sensing (QS) and nucleotide-based second messengers are vital signaling systems that regulate bacterial physiology in response to changing environments. Disrupting bacterial signal transduction is a promising direction to combat infectious diseases, and QS and the second messengers are undoubtedly potential targets. In Vibrio cholerae, both QS and the second messenger 3’, 5’—cyclic diguanylate (c-di-GMP) play a central role in controlling motility, motile-to-sessile life transition, and virulence. In this study, we found that water-soluble extract from the North American cranberry could significantly inhibit V. cholerae biofilm formation during the development/maturation stage by reducing the biofilm matrix production and secretion. The anti-biofilm effect by water-soluble cranberry extract was possibly through modulating the intracellular c-di-GMP level and was independent of QS and the QS master regulator HapR. Our results suggest an opportunity to explore more functional foods to fight stubborn infections through interference with the bacterial signaling systems

    Liver Toxicity of Rare Ginsenosides in Rats after 13 Weeks of Oral Exposure

    Get PDF
    Objective: This study aims to evaluate the hepatotoxicity of rare ginsenosides in rats after 90 days of oral administration using heat-transformed rare ginsenosides as the primary material. Methods: A total of 48 male and female rats were randomly assigned into four groups: High-dose rare ginsenosides (600 mg/kg), medium-dose rare ginsenosides (200 mg/kg), low-dose rare ginsenosides (60 mg/kg), and a blank control group. After 90 days of oral gavage treatment, ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was employed for metabolomic analysis of rat serum and flow cytometry analysis of liver apoptosis to evaluate the potential liver damage comprehensively in rats. Results: A significant difference in hepatocyte apoptotic rate was observed between the high-dose group and the control group in both male and female rats (P0.05). However, 23 differential metabolites, such as histidine, glutamate, proline and arginine were identified in the serum of female rats in the high-dose group, affecting the histidine and urea cycle metabolic pathways and causing hyperammonemia and liver damage. Ten differential metabolites affecting the alpha-linolenic acid and linoleic acid metabolic pathways were found in male rats, such as linoleic acid and arachidonic acid. High concentrations of arachidonic acid showed inflammatory and toxic effects, which could be absorbed into the portal vein system through blood and cause liver damage. Conclusion: High-dose rare ginsenosides mainly cause slight liver damage in male and female rats mainly due to the changes of histidine, α-linolenic acid and linoleic acid metabolic pathways. Hence, no adverse liver effects were observed at doses less than 200 mg/kg in both male and female rats

    Directional Enhanced Probe for Side-Illumination Tip Enhanced Spectroscopy

    Full text link
    We demonstrate a high-performance apertureless near-field probe made of a tapered metal tip with a set of periodic shallow grooves near the apex. The spontaneous emission from a single emitter near the tip is investigated systematically for the side-illumination tip enhanced spectroscopy (TES). In contrast with the bare tapered metal tip in conventional side-illumination TES, the corrugated probe not only enhances strongly local excitation field but also concentrates the emission directivity, which leads to high collection efficiency and signal-to-noise ratio. In particular, we propose an asymmetric TES tip based on two coupling nanorods with different length at the apex to realize unidirectional enhanced emission rate from a single emitter. Interestingly, we find that the radiation pattern is sensitive to the emission wavelength and the emitter positions respective to the apex, which can result in an increase of signal-to-noise ratio by suppressing undesired signal. The proposed asymmetrical corrugated probe opens up a broad range of practical applications, e.g. increasing the detection efficiency of tip enhanced spectroscopy at the single-molecule level

    Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor

    Full text link
    Majorana zero-modes (MZMs) are spatially-localized zero-energy fractional quasiparticles with non-Abelian braiding statistics that hold a great promise for topological quantum computing. Due to its particle-antiparticle equivalence, an MZM exhibits robust resonant Andreev reflection and 2e2/h quantized conductance at low temperature. By utilizing variable-tunnel-coupled scanning tunneling spectroscopy, we study tunneling conductance of vortex bound states on FeTe0.55Se0.45 superconductors. We report observations of conductance plateaus as a function of tunnel coupling for zero-energy vortex bound states with values close to or even reaching the 2e2/h quantum conductance. In contrast, no such plateau behaviors were observed on either finite energy Caroli-de Genne-Matricon bound states or in the continuum of electronic states outside the superconducting gap. This unique behavior of the zero-mode conductance reaching a plateau strongly supports the existence of MZMs in this iron-based superconductor, which serves as a promising single-material platform for Majorana braiding at a relatively high temperature

    Mycobacterial Infection is Promoted by Neutral Sphingomyelinase 2 Regulating a Signaling Cascade Leading to Activation of β1-Integrin

    Get PDF
    Background/Aims: Mycobacteria-induced diseases, especially tuberculosis, cause more than 1 million deaths each year, which is higher than any other single bacterial pathogen. Neutral sphingomyelinase 2 (Nsm2) has been implied in many physiological processes and diseases, but the role of Nsm2 in pathogen-host interactions and mycobacterial infections has barely been studied. Methods: We investigated the role of the Nsm2/ceramide system in systemic infection of mice and murine macrophages with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a model for mycobacterial infection. For in vitro assays we isolated bone marrow-derived macrophages from Wildtype mice or Nsm2-heterozygous and investigated the role of Nsm2 for macrophage migration/clustering as well as the involvement of p38 mitogen-activated protein kinases (p38K), c-Jun N-terminal kinase (JNK), β1-integrin and Rac1 activity by Western blot and microscopic studies. For in vivo assays we injected mice intravenously with BCG and analyzed infected tissues for the role of Nsm2-mediated activation of β1-integrin in granuloma formation and bacterial burden. Results: Our results reveal that BCG infection of macrophages results in rapid stimulation of Nsm2. Genetic and pharmacological studies demonstrate that Nsm2 stimulates a signaling cascade via p38K and JNK to an activation of surface β1-integrin and Rac1 that leads to the formation of granuloma-like macrophages clusters in vitro and granuloma in vivo. Heterozygosity of Nsm2 in macrophages or antibody-mediated neutralization of active b1-integrin reduced macrophage clusters in vitro and granuloma formation in vivo. Most importantly, Nsm2 heterozygosity or treatment with neutralizing antibodies against β1-integrin protected mice from systemic BCG infections and chronic infections of the liver and spleen. Conclusion: The findings indicate that the Nsm2/ ceramide system plays an important role in systemic infection of mice with mycobacteria by regulating a signaling cascade via p38K, JNK, b1-integrin and Rac1

    A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes

    Get PDF
    We have developed a wood waste-derived biochar as a sustainable graphitic carbon catalyst for environmental remediation through catalytic pyrolysis under the synergistic effects between Cu heteroatoms and CO2, which for the first time are found to significantly enhance the oxygen functionalities, defective sites, and highly ordered sp2-hybridized carbon matrix. The copper-doped graphitic biochars (Cu-GBCs) were further characterized by XRD, FTIR, Raman, XPS, etc., revealing that the modified specific surface area, pore structure, graphitization, and active sites (i.e., defective sites and ketonic group) on the Cu-GBCs corresponded to the synergistic Cu species loading and Cu-induced carbon-matrix reformation in CO2 environment during pyrolysis. The catalytic ability of Cu-GBCs was evaluated using the ubiquitous peroxydisulfate (PDS) activation system for the removal of various organic contaminants (i.e., rhodamine B, phenol, bisphenol A, and 4-chlorophenol), and gave the highest degradation rate of 0.0312 min-1 in comparison with those of pristine GBCs and N2-pyrolyzed Cu-GBCs ranging from 0.0056 to 0.0094 min-1. The synergistic effects were attributed to the encapsulated Cu heteroatoms, evolved ketonic groups, and abundant unconfined π electrons within the carbon lattice. According to scavenger experiments, ESR analysis, and two-chamber experiments, selective and sustainable non-radical pathways (i.e., singlet oxygenation and electron transfer) mediated by the Cu-induced metastable surface complex were achieved in the Cu-GBC/PDS system. This study offers the first insights into the efficacy, sustainability, and mechanistic roles of Cu-GBCs as an emerging carbon-based catalyst for green environmental remediation
    • …
    corecore