3 research outputs found

    Improved production of chlorogenic acid from cell suspension cultures of Lonicera macranthoids

    Get PDF
    Purpose: To evaluate the potential of Lonicera macranthoides Hand. -Mazz. Yulei1 suspension culture system for enhanced production of the main secondary metabolite, chlorogenic acid.Methods: The callus of L. macranthoides Hand.-Mazz. “Yulei1” was suspension cultured in B5 liquid medium supplemented with different plant growth regulators. Biomass accumulation was calculated by weight method and chlorogenic acid production was measured using high performance liquid chromatography (HPLC). HPLC was carried out on C18 analytical column at 35 °C and the detection wavelength was set at 324 nm.Results: The results showed that maximum accumulation of biomass and chlorogenic acid were achieved 15 days after culture growth. The optimized conditions for biomass accumulation and chlorogenic acid production were 50 g/L of inoculum on fresh weight basis, B5 medium supplemented with plant growth regulators, 30 - 40 g/L sucrose and initial medium pH of 5.5. Maximum accumulation of chlorogenic acid and biomass were observed when the culture medium was supplemented with 2.0 mg/L6-BA. Optimal accumulation of chlorogenic acid was observed using combination of hormones 2.0 mg/L 6-Benzyladenine (BA) + 0.5 mg/L2, 4-Dichlorophenoxyacetic acid (2,4-D), while optimal accumulation of biomass was observed with 2.0 mg/L 6-BA + 2.0 mg/L2, 4-D. In addition, phenylalanine also contributed to the synthesis of chlorogenic acid at a concentration > 50 mg/L.Conclusion: Cell suspension cultures of L. macranthoides Hand.-Mazz. “Yulei1” have successfully been established. The findings provide a potential basis for large scale production of chlorogenic acid using cell suspension cultures of L. macranthoides.Keywords: Lonicera macranthoides, Cell suspension culture, Chlorogenic acid, Phenylalanine, Optimizatio

    Genome-Wide Transcriptome Profiling of Mycobacterium smegmatis MC2 155 Cultivated in Minimal Media Supplemented with Cholesterol, Androstenedione or Glycerol

    No full text
    Mycobacterium smegmatis strain MC2 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC2 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively. This study provides a comprehensive analysis of the cholesterol responsive transcriptome of M. smegmatis. Our results indicated that cholesterol induced many more genes and increased the expression of the majority of genes involved in cholesterol degradation and MCE in M. smegmatis, while androstenedione did not have the same effect
    corecore