7 research outputs found

    Genome cloning and genetic evolution analysis of eight duck-sourced novel goose parvovirus strains in China in 2023

    Get PDF
    IntroductionThere are three major categories of waterfowl parvoviruses, namely goose parvovirus (GPV), Muscovy duck parvovirus, and novel goose parvovirus (NGPV). NGPV can infect both Cherry Valley ducks and mule ducks, resulting in short beaks and dwarfism syndrome, and the incidence of short beaks and dwarfism syndrome rises annually, posing a significant threat to the waterfowl breeding and the animal husbandry. Therefore, clarifying the biological characteristics and genetic evolution of NGPV is very important for the prevention and control of NGPV.MethodsDucks with short beaks and dwarfism syndrome from Shandong and Henan Province were investigated by dissection and the tissue samples were collected for study. The NGPV genome was amplified by PCR, and the genome was analyzed for genetic evolution.ResultsEight strains of NGPV were isolated, which were designated as HZ0512, HZ0527, HZ0714, HZ0723, HZ0726, HZ0811, HZ0815, and HN0403. The nucleotide homology among these strains ranged from 99.9% to 100%. The eight strains, along with other NGPVs, belong to GPV. The eight strains showed a 92.5%–98.9% nucleotide homology with the classical GPV, while a 96.0%–99.9% homology with NGPV.Therefore, it can be deduced that there have been no major mutations of NGPV in Shandong and Henan provinces in recent years.DiscussionThis study lays a theoretical foundation for further studying the genetic evolution and pathogenicity of NGPV, thereby facilitating the prevention and control of NGPV

    An egg holders-inspired structure design for large-volume-change anodes with long cycle life

    Get PDF
    Abstract(#br)Silicon has been considered as a potential alternative of anodes for advanced lithium ion battery as it possesses high capacity and abundance. However, it encounters excessive volume expansion and inferior electoral conductivity, which imposes restrictions on its further development. In order to address these two problems, yolk-shell structure is employed, in which there is a suitable void for the expansion with a shell to protect the core and promote the conductivity. Here, by the inspiration from the egg holders and inverse-opal structure, an egg-stacking-like Si/C composite (ES) anode with spherical air holes was fabricated to gather the yolk-shell particles in a 3D carbon network with abundant channels allowing electrolyte to enter the material, which can facilitate the cycling performance. The half-cell battery assembled with these anodes presents high capacity and good rate performance, with a capacity reduction of only 2–7% per current density. And the cycling performance of ES anode is also praiseworthy that it delivers a high reversible discharge capacity of 2175 mAh g −1 after 300 cycles at 0.5 A g −1 . This kind of structure design is expected to be applicative for most of large-volume-change anodes

    Manganese Oxide on Carbon Fabric for Flexible Supercapacitors

    No full text
    We report the fabrication of uniform large-area manganese oxide (MnO2) nanosheets on carbon fabric which oxidized using O2 plasma treatment (MnO2/O2-carbon fabric) via electrodeposition process and their implementation as supercapacitor electrodes. Electrochemical measurements demonstrated that MnO2/O2-carbon fabric exhibited capacitance as high as 275 F/g at a scan rate of 5 mV/s; in addition, it showed an excellent cycling performance (less than 20% capacitance loss after 10,000 cycles). All the results suggest that MnO2/O2-carbon fabric is a promising electrode material which has great potential for application on flexible supercapacitors
    corecore