32 research outputs found

    Chloride-Binding Capacity of Portland Cement Paste Blended with Synthesized CA 2

    Get PDF
    A chloride-binding capacity is the major factor to mitigate the ingress of chloride into concrete. This paper presents the chloride-binding capacity of Portland cement paste containing synthesized CA2 (CaO·2Al2O3). The CA2 was synthesized in the high-temperature furnace and characterized by X-ray diffraction for inspecting the purity. The synthesized CA2 was substituted for Portland cement by 0%, 5%, and 10% by weight, and the NaCl solution was used as an internal chloride, which is assumed as a total chloride. The chloride-binding capacity of cement paste was calculated from a water-soluble chloride extraction method by the application of the Langmuir isotherm equation. And the hydration products were analyzed using X-ray diffraction and thermogravimetric analysis. We demonstrate that the CA2 increases an AFm phase in the Portland cement system, and the incorporation of CA2 consequently enhances the chloride-binding capacity of cement paste samples

    Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    No full text
    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER

    Role of nano-hydrogels coated exosomes in bone tissue repair

    Get PDF
    With the development of nanotechnology, nanomaterials are widely applied in different areas. Some nanomaterials are designed to be biocompatible and can be used in the medical field, playing an important role in disease treatment. Exosomes are nanoscale vesicles with a diameter of 30–200 nm. Studies have shown that exosomes have the effect of angiogenesis, tissue (skin, tendon, cartilage, et al.) repair and reconstruction. Nano-hydrogels are hydrogels with a diameter of 200 nm or less and can be used as the carrier to transport the exosomes into the body. Some orthopedic diseases, such as bone defects and bone infections, are difficult to handle. The emergence of nano-hydrogels coated exosomes may provide a new idea to solve these problems, improving the prognosis of patients. This review summarizes the function of nano-hydrogels coated exosomes in bone tissue repair, intending to illustrate the potential use and application of nano-hydrogels coated exosomes in bone disease

    A Long-Acting BMP-2 Release System Based on Poly(3-hydroxybutyrate) Nanoparticles Modified by Amphiphilic Phospholipid for Osteogenic Differentiation

    No full text
    We explored a novel poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with hydrophilic recombinant human BMP-2 with amphiphilic phospholipid (BPC-PHB NP) for a rapid-acting and long-acting delivery system of BMP-2 for osteogenic differentiation. The BPC-PHB NPs were prepared by a solvent evaporation method and showed a spherical particle with a mean particle size of 253.4 nm, mean zeta potential of −22.42 mV, and high entrapment efficiency of 77.18%, respectively. For BPC-PHB NPs, a short initial burst release of BMP-2 from NPs in 24 h was found and it has steadily risen to reach about 80% in 20 days for in vitro test. BPC-PHB NPs significantly reduced the burst release of BMP-2, as compared to that of PHB NPs loading BMP-2 without PL (B-PHB NPs). BPC-PHB NPs maintained the content of BMP-2 for a long-term osteogenic differentiation. The OCT-1 cells with BPC-PHB NPs have high ALP activity in comparison with others. The gene markers for osteogenic differentiation were significantly upregulated for sample with BPC-PHB NPs, implying that BPC-PHB NPs can be used as a rapid-acting and long-acting BMP-2 delivery system for osteogenic differentiation

    Medial stability and lateral flexibility of the collateral ligaments during mid-range flexion in medial-pivot total knee arthroplasty patients demonstrates favorable postoperative outcomes

    Full text link
    PURPOSE The objectives of the present study were to investigate the length change in different bundles of the superficial medial collateral ligament (sMCL) and lateral collateral ligament (LCL) during lunge, and to evaluate their association with Knee Society Score (KSS) following medial-pivot total knee arthroplasty (MP-TKA). METHODS Patients with unilateral MP-TKA knees performed a bilateral single-leg lunge under dual fluoroscopy surveillance to determine the in-vivo six degrees-of-freedom knee kinematics. The contralateral non-operated knees were used as the control group. The attachment sites of the sMCL and LCL were marked to calculate the 3D wrapping length. The sMCL and LCL were divided into anterior, intermediate, and posterior portions (aMCL, iMCL, pMCL, aLCL, iLCL, pLCL). Correlations between lengths/elongation rate of ligament bundles from full extension to 100° flexion and the KSS were examined. RESULTS The sMCL and LCL demonstrated relative stability in length at low flexion, but sMCL length decreased whereas LCL increased with further flexion on operated knees. The sMCL length increased at low flexion and remained stable with further flexion, while the LCL length decreased with flexion on the contralateral non-operated knees. The lengths of aMCL, iMCL, and pMCL showed moderate (0.5 < r < 0.7, p < 0.05) negative correlations with the KSS, and the lengths of aLCL, iLCL, and pLCL were positively correlated with the KSS at mid flexion on operated knees (p < 0.05). The elongation rates of aLCL, iLCL, and pLCL were negatively correlated with the KSS at high flexion on operated knees (p < 0.05). However, no significant correlations between the length of different bundles of sMCL or LCL with KSS were found on contralateral non-operated knees. CONCLUSIONS The elongation pattern of sMCL/LCL on MP-TKA knees showed differences with contralateral non-operated knees. The sMCL is tense at low to middle flexion and relaxed at high flexion, while LCL is relaxed at low to middle flexion and tense at high flexion following MP-TKA. Medial stability and proper lateral flexibility during mid flexion were associated with favorable postoperative outcomes in MP-TKA patients. In contrast, lateral relaxation at deep flexion should be avoided when applying soft-tissue balancing in MP-TKA. LEVEL OF EVIDENCE Level III

    Genome-wide analysis of the pentatricopeptide repeat gene family in different maize genomes and its important role in kernel development

    No full text
    Abstract Background The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants (450 PPR genes in Arabidopsis, 477 PPR genes in rice and 486 PPR genes in foxtail millet) and is important for plant development and growth. Most PPR genes are encoded by plastid and mitochondrial genomes, and the gene products regulate the expression of the related genes in higher plants. However, the functions remain largely unknown, and systematic analysis and comparison of the PPR gene family in different maize genomes have not been performed. Results In this study, systematic identification and comparison of PPR genes from two elite maize inbred lines, B73 and PH207, were performed. A total of 491 and 456 PPR genes were identified in the B73 and PH207 genomes, respectively. Basic bioinformatics analyses, including of the classification, gene structure, chromosomal location and conserved motifs, were conducted. Examination of PPR gene duplication showed that 12 and 15 segmental duplication gene pairs exist in the B73 and PH207 genomes, respectively, with eight duplication events being shared between the two genomes. Expression analysis suggested that 53 PPR genes exhibit qualitative variations in the different genetic backgrounds. Based on analysis of the correlation between PPR gene expression in kernels and kernel-related traits, four PPR genes are significantly negatively correlated with hundred kernel weight, 12 are significantly negatively correlated with kernel width, and eight are significantly correlated with kernel number. Eight of the 24 PPR genes are also located in metaQTL regions associated with yield and kernel-related traits in maize. Two important PPR genes (GRMZM2G353195 and GRMZM2G141202) might be regarded as important candidate genes associated with maize kernel-related traits. Conclusions Our results provide a more comprehensive understanding of PPR genes in different maize inbred lines and identify important candidate genes related to kernel development for subsequent functional validation in maize

    Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping

    No full text
    Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci

    Injectable Biomimetic Hydrogel Guided Functional Bone Regeneration by Adapting Material Degradation to Tissue Healing

    No full text
    The treatment of irregular bone defects remains a clinical challenge since the current biomaterials (e.g., calcium phosphate bone cement (CPC)) mainly act as inert substitutes, which are incapable of transforming into a regenerated host bone (termed functional bone regeneration). Ideally, the implant degradation rate should adapt to that of bone regeneration, therefore providing sufficient physicochemical support and giving space for bone growth. This study aims to develop an injectable biomaterial with bone regeneration-adapted degradability, to reconstruct a biomimetic bone-like structure that can timely transform into new bone, facilitating functional bone regeneration. To achieve this goal, a hybrid (LP-CPC@gelatin, LC) hydrogel is synthesized via one-step incorporation of laponite (LP) and CPC into gelatin hydrogel, and the LC gel degradation rate is controlled by adjusting the LP/CPC ratio to match the bone regeneration rate. Such an LC hydrogel shows good osteoinduction, osteoconduction, and angiogenesis effects, with complete implant-to-new bone transformation capacity. This 2D nanoclay-based bionic hydrogel can induce ectopic bone regeneration and promote ligament graft osseointegration in vivo by inducing functional bone regeneration. Therefore, this study provides an advanced strategy for functional bone regeneration and an injectable biomimetic biomaterial for functional skeletal muscle repair in a minimally invasive therapy.</p

    Bioactive Film-Guided Soft–Hard Interface Design Technology for Multi-Tissue Integrative Regeneration

    No full text
    Control over soft-to-hard tissue interfaces is attracting intensive worldwide research efforts. Herein, a bioactive film-guided soft–hard interface design (SHID) for multi-tissue integrative regeneration is shown. Briefly, a soft bioactive film with good elasticity matchable to native ligament tissue, is incorporated with bone-mimic components (calcium phosphate cement, CPC) to partially endow the soft-film with hard-tissue mimicking feature. The hybrid film is elegantly compounded with a clinical artificial ligament to act as a buffer zone to bridge the soft (ligament) and hard tissues (bone). Moreover, the bioactive film-decorated ligament can be rolled into a 3D bio-instructive implant with spatial-controllable distribution of CPC bioactive motifs. CPC then promotes the recruitment and differentiation of endogenous cells in to the implant inside part, which enables a vascularized bone growth into the implant, and forms a structure mimicking the biological ligament–bone interface, thereby significantly improving osteointegration and biomechanical property. Thus, this special design provides an effective SHID-guided implant-bioactivation strategy unreached by the traditional manufacturing methods, enlightening a promising technology to develop an ideal SHID for translational use in the future.</p
    corecore