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With the development of nanotechnology, nanomaterials are widely applied in
different areas. Some nanomaterials are designed to be biocompatible and can be
used in themedical field, playing an important role in disease treatment. Exosomes
are nanoscale vesicles with a diameter of 30–200 nm. Studies have shown that
exosomes have the effect of angiogenesis, tissue (skin, tendon, cartilage, et al.)
repair and reconstruction. Nano-hydrogels are hydrogels with a diameter of
200 nm or less and can be used as the carrier to transport the exosomes into
the body. Some orthopedic diseases, such as bone defects and bone infections,
are difficult to handle. The emergence of nano-hydrogels coated exosomes may
provide a new idea to solve these problems, improving the prognosis of patients.
This review summarizes the function of nano-hydrogels coated exosomes in bone
tissue repair, intending to illustrate the potential use and application of nano-
hydrogels coated exosomes in bone disease.
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Introduction

Bone tissue can regenerate as part of the repair process following bone disease, such as
trauma, bone tumor, and bone defect. The commonest form of bone repair is bone fracture
healing. Intramembranous and endochondral ossification are involved in the process
(Dimitriou et al., 2011). However, the ability of bone tissue repair is limited. In severe
bone diseases, the bone’s compensatory capacity is impaired, in which interventions are
needed. Sometimes it is necessary to perform surgery because conservative therapies usually
have little effect on bone tissue repair. Although surgery can achieve good results in most
cases, it is, after all, an invasive procedure, and in patients who already had bone surgery
before, a second revision surgery requires careful consideration. So, finding ways to reduce or
even avoid surgery intervention and effectively promote bone repair is a new trend in the
treatment of bone diseases.

Johnstone et al. discovered a vesicle-like structure during the period of sheep reticulocyte
maturation and isolated these membrane-bound vesicles by ultracentrifugation. The vesicle-
like structures were given the name “exosomes” for the first time (Johnstone et al., 1987;
Johnstone, 2005). Exosomes are nanoscale extracellular vesicles with 30–200 nm in diameter
that are produced through budding from the plasma membrane and endosome membrane.
Exosome contain a variety of substances, such as nucleic acids, lipids, and proteins,
expressing transmembrane proteins and receptors that facilitate intracellular
communication and materials transportation. Donor cells can transfer exogenous
substances such as proteins, mRNAs, microRNAs (miRNAs), and lipids to recipient cells
via exosomes (Liang et al., 2021a). Exosomes carry mRNAs and miRNAs, playing a key role
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in the repair of various tissue injuries (Wang et al., 2020a; Liu et al.,
2021). It has been shown that mesenchymal stem cells (MSCs)
derived exosomes can protect cartilage, downregulate the expression
of inflammatory factors, and inhibit the conversion of macrophages
to the M1 type (M1 type promotes inflammatory reaction), which
can be used as a novel treatment for osteoarthritis (Pandey et al.,
2022). Bone morphogenetic protein 2 (BMP2)/macrophage-derived
exosomes can regulate the osteoblast differentiation of MSCs,
stimulating bone regeneration. Exosomes also play an important
role in angiogenesis and in the repair and reconstruction process of
many tissues (e.g., skin, tendon, cartilage) (Zhang et al., 2021a). The
excellent properties of exosomes make them ideal materials for bone
tissue repair. Many studies have focused on this hot spot.

On the other hand, cutting-edge research in nanomaterials also
brings new opportunities for bone repair and reconstruction. Hydrogels
are a class of polymeric materials with high water contents that have
been widely used in cell culture, drug delivery, tissue engineering, and
other biomedical fields. Hydrogels have a unique three-dimensional
structure that provides sufficient space to accommodate a variety of
substances, including small molecules, polymers, and particles. Due to
their soft, moist, and biocompatible properties, hydrogels can be used as
matrix components for engineering living cells, leading the nascent field
of engineeringmaterial science (Liu et al., 2022a). Hydrogels can also be
used as drug carriers. After relevant modifications, Hydrogels enable
precise target positioning and controlled release of drugs, which is safe
and effective. Some wearable tissue-adhesive electronic devices also
form interfaces with tissues (e.g., skin) through the good adhesion and
electrical conductivity of hydrogels, and are used for real-time in vitro
sensing and organ repair (Li et al., 2021a). The use of biomaterials with
antimicrobial hydrogel coatings is an effective way to combat colonizing
bacteria. As for bone tissue repair, some studies demonstrated hydrogels
can accelerate bone growth (Anada et al., 2019; Hasani-Sadrabadi et al.,
2020; Datta et al., 2021), which can be used in the treatment of bone
diseases.

According to the previous study, exosomes and hydrogels have
positive functions in the process of bone tissue repair, bringing new
hope for the treatment of orthopedic diseases. And there are studies
focusing on the nano-hydrogels coated exosomes in bone tissue
repair aspects.

This review intends to explore the role of nano-hydrogels coated
exosomes in the bone tissue repair process and discover its functions
in various bone diseases.

Exosomes

Exosomes are single-membrane vesicles with the same topology
as cells, with diameters ranging from 30 to 200 nm (Pegtel and
Gould, 2019). Exosomes are a subset of extracellular vesicles which
are produced as a result of double invagination of the plasma
membrane and the formation of intracellular multivesicular
bodies (MVBs) containing intraluminal vesicles (ILVs). ILVs are
eventually secreted as exosomes with diameters ranging from 40 to
160 nm via fusions of MVBs to the plasma membrane and
exocytosis (Kalluri and LeBleu, 2020). MVBs and exosomes’
production and release are controlled by the endosomal sorting
complexes needed for the transport (ESCRT) pathway (Wollert and
Hurley, 2010). Exosomes are now known to be released into the

extracellular environment by donor cells to perform a variety of
biological functions, such as intracellular communication and the
exchange of genetic material and proteins between a parent cell and
surrounding cells. Their functions for drug delivery in cancer
immunotherapy have been proven. Because of their microRNA
and mRNA contents, they are also a promising biological gene
delivery system (Hade et al., 2021). As a novel material, its
application in the medical field remains to be explored further.
Figure 1 shows the morphology of exosomes (Red arrow) under
electron microscopy. Figure 2 is the diagram of exosomes secretion.

Exosomes components

Exosomes are made up of a wide range of materials, including
lipids, proteins, DNA, and RNA. Some specific components,
including lipids, proteins, DNA, mRNA, and noncoding
RNAs, can function as autocrine and/or paracrine agents (Dai
et al., 2020).

Lipid
Exosomes’ lipid composition includes sphingolipids, cholesterol,

phosphatidylserine, saturated fatty acids, and ceramides, all of which
can be discovered in plasma membranes (Skotland et al., 2020).
Exosomes’ lipid composition is cell-specific or conserved. Lipids
have a crucial role in exosomes shape preservation, exosomes
synthesis, and exosomes’ homeostasis maintenance in the
recipient cells (Mashouri et al., 2019).

Protein
Exosomes’ protein composition includes membrane

trafficking-related proteins, such as the tetraspanins (CD63,
CD81, CD82, and CD9) (Larios et al., 2020). Additionally,
integrins (cell adhesion-related proteins), actin, myosin
(participating in cytoskeletal construction), MHC class II
proteins, and heat-shock proteins (Hsp60, Hsp70, and Hsp90)
can be concentrated in exosomes (Clayton et al., 2005; Dai et al.,
2020). Regardless of the type of cells that exosomes originate
from, ESCRT proteins and their accessory proteins (Alix,
TSG101, HSC70, and HSP90) are predicted to be present in
exosomes as they govern exosomal production and MVBs transit
(Tauro et al., 2012). This group of proteins are hence known as
“exosomal marker proteins”. (Tauro et al., 2012).

DNA and RNA
Exosomal DNA (exoDNA) can be single-stranded or double-

stranded DNA. It contains both nuclear and mitochondrial DNA.
ExoDNA exists on the surface of the vesicle or inside the vesicle
(Wortzel et al., 2019).

The most frequently researched exosomal RNA species are
mRNAs and miRNAs (Carnino et al., 2020). Some exosomal
mRNAs have been shown by Valadi et al. to be intact and
capable of being translated into useful proteins in recipient cells
(Valadi et al., 2007). MicroRNAs (miRNAs), which are
significant members of the small non-coding RNA family
and range in length from 20 to 22 nucleotides, have been
extensively studied in a wide range of physiological and
pathological processes. They mediate post-transcriptional
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gene silencing by binding to the 3′-untranslated region or open
reading frames of the target mRNA (Treiber et al., 2019).
MiRNAs can also be found in exosomes that have been
extracted from bodily fluids (such as saliva, blood, or
serum), suggesting the potential benefits of employing
exosomal miRNAs as the novel, non-invasive biomarkers
(Nedaeinia et al., 2017). RNA species are sorted into
exosomes in a variety of ways.

Classifications

Depending on whether they have undergone artificial
modification, exosomes are classified as natural exosomes or
designed exosomes. Natural exosomes can be divided into
animal-derived exosomes and plant-derived exosomes. Animal-
derived exosomes are further separated into normal exosomes
and tumor exosomes according to their environments (normal or
malignant) (Zhang et al., 2020a).

Exosomes from different origins

Nearly all normal cell types, including human umbilical vein
endothelial cells, mesenchymal stem cells (MSCs), T cells, B cells,
macrophages, dendritic cells (DC), and natural killer (NK) cells,
have the ability to create exosomes (Cheng et al., 2017; He et al.,
2020; Li et al., 2020; Zhao et al., 2020).

Additionally, the previously described normal exosomes can be
found in large quantities in biofluids like saliva, plasma, urine,
ascites, milk, and bile.

Below we have listed several common sources of exosomes. (See
Figure 3).

Mesenchymal stem cells exosomes
Mesenchymal stem cells (MSCs) are multipotent mesenchymal

stromal cells that can differentiate into a variety of cell types,
including osteocytes, chondrocytes, adipocytes, cardiomyocytes,
and endothelial cells. They also have the self-renew ablity
(generate more MSCs themselves) (Akbari et al., 2020). MSCs
can be extracted from a variety of body fluids and tissues,
including adipose tissue, bone marrow, tooth pulp, synovial fluid,
amniotic fluid, placenta, umbilical cord, and Wharton’s jelly
(Andrzejewska et al., 2019). MSCs exosomes are widely used in
tissue repair aspects.

Adipocyte exosomes
Adipocytes can secret exosomes and act locally in paracrine

ways or enter the bloodstream to exert systemic effects (Isaac
et al., 2021). Using a fat-specific Dicer deletion, Thomou et al.
demonstrated that adipocytes were a significant source of
circulating exosomal miRNAs (Thomou et al., 2017). MiR-16,
miR-27a, miR-146b, and miR-222 are found in exosomes
generated by giant adipocytes, and they can be transferred to
tiny adipocytes to promote lipogenesis and adipocyte
hypertrophy (Müller et al., 2011). Adipocyte exosomes also
contain non-miRNA that have distant biologic effects (Isaac
et al., 2021).

Endothelial cell exosomes
The endothelial cell (EC) activation or apoptosis can trigger

the release of generated exosomes. In peripheral circulation, EC

FIGURE 1
Microscopic observation of exosomes (magnification × 60 k, Scale 100 nm).
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exosomes account for 5%–15% of the total circulating vesicles
(Arraud et al., 2014). Proteins detected in released EC exosomes
match those in the generating EC, according to proteomic
investigations; some of these proteins can be transported to
recipient cells (Liu et al., 2013).

Skeletal muscle exosomes
Exosomes produced by skeletal muscle have been found to

have both paracrine and endocrine impacts on the preservation
of muscle homeostasis and communication with other tissues
(Qin and Dallas, 2019). Myoblasts and myotubes, two types of
muscle cells, are sources of exosomes that express the
Tsg101 and Alix protein markers as well as other signals
transduction related proteins (Rome et al., 2019). Exosomes
may play a role in the differentiation and maturation of skeletal
muscle as numerous proteins involved in the transition from
myoblast to myotube are found in exosomes, (Le Bihan et al.,
2012).

Tumor-cell derived exosomes
Exosomes can be produced in huge quantities by tumor cells.

The unique antigens on their surface may reveal information
about the origins of donor cells. Tumor exosomes contribute to
the growth, metastasis, and immunological control of tumors.
They also monitor the onset of diseases and act as diagnostic
indicators for illnesses (Poggio et al., 2019; Sanderson et al.,
2019).

Exosomes and bone tissue repair

Exosomes can be secreted by cells such as osteoblasts,
osteoclasts, osteocytes, and MSCs, which are known to
mediate cellular communication and participate in the
regulation of the bone microenvironment. Exosomes play
critical regulatory roles in bone remodeling. Exosomes
derived from osteoblasts stimulate osteoclast differentiation
in vivo, and thus exosomes treatment can be used to enhance
the removal of damaged tissue (Hade et al., 2021). Exosomes

from different origins can be made in different forms and
injected into the bone defect area to facilitate bone
regeneration. Stem cells derived exosomes can promote
osteogenesis through four main mechanisms: reducing
apoptosis, recruiting mesenchymal stem cells and promoting
their proliferation, creating an osteogenic-inducing
environment to promote osteogenic differentiation of stem
cells, and accelerating angiogenesis and bone vascularization
(Girón et al., 2022). Its applications for bone defect, bone and
cartilage regeneration, osteoarthritis, osteoporosis, and
osteonecrosis have been described (Bei et al., 2021). The
most commonly used exosomes in medical fields are MSCs
exosomes. MSCs can secret exosomes, which are the primary
therapeutic agents for encouraging tissue regeneration (Yu
et al., 2014). MSCs-exosomes have anti-inflammatory and
immunomodulatory functions and can be a perfect
alternative to MSCs therapy because they possess similar
biological functions to their originating cells while they are
stabler and have lower immunogenicity (Ha et al., 2020). MSCs-
exosomes were proven to have a protective function against the
cardiovascular system by Lai et al. in a cardiac ischemia-
reperfusion damage mouse model (Lai et al., 2010). And
later, exosomes’ therapeutic use was extended to models of
additional diseases. Studies have shown exosomes from MSCs
have a significant impact on bone regeneration and exhibit
osteoinductive properties (Li et al., 2018).

Hydrogels

The chemical structure of hydrogels is a three-dimensional
polymeric network connecting hydrophilic components
(Gradinaru et al., 2018). Hydrogels are made up of
hydrophilic polymers with polar functional groups and have a
high water content (Zhang et al., 2020b). The network is
composed of crosslinking polymers with covalent bonds or
noncovalent interactions. Their structure can be changed for
different applications. Due to their stable physicochemical

FIGURE 3
Common exosomes origins.

FIGURE 2
The process of exosomes secretion in cells.
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properties, hydrogels have been widely studied. The biomedical
applications of hydrogels include 3D cell culture, drug delivery,
wound dressing, tissue engineering and so on (Ho et al., 2022).

Common materials of the hydrogels

Natural polymers
Natural hydrogels have good biocompatibility and bioactivity,

which can promote cell adhesion, proliferation, and tissue repair and
regeneration. Natural polymer molecules from living beings, such as
proteins and polysaccharides (hyaluronic acid, sodium alginate,
chitosan, and agarose), make up the raw ingredients [e.g.,
collagen, tropocollagen, gelatin, silk fibroin (Ju et al., 2023)]. But
they are unstable, needing to be crosslinked with additional
polymers due to their poor durability, mechanical characteristics,
and tissue adhesion capabilities.

Polysaccharides
Polysaccharides that have been used in hydrogels making

include hyaluronic acid (HA), chitosan, and alginate.
HA is a linear nonsulfated glycosaminoglycan, which is a

significant element of the ECM and is present in practically all
bodily fluids and tissues (Yasin et al., 2022). Since HA is an
important part of cartilage tissue and has good biocompatibility,
HA hydrogels are crucial in the cartilage tissue engineering
(Ngadimin et al., 2021).

Chitosan is a frequently used ingredient in the process of
creating natural hydrogels, which is hydrophilic, biocompatible,
and biodegradable. It can be degraded by lysozyme, acid, and
colonic bacteria in the human body (Ways et al., 2018). Chitosan
has an amine group and can react with other aldehyde-containing
polysaccharides through Schiff base reaction, making it a good
material for the preparation of self-healing hydrogels (Mo et al.,
2021).

Alginate is a natural marine polysaccharide, and sodium alginate
is the most often used extract (Zhang et al., 2021b). Alginate is an
abundant and easily accessible biopolymer with exceptional
biocompatibility, good porosity, high capacity to retain water,
and changeable viscosity (Liu et al., 2022b). Through ion-
exchange interactions with cations, sodium alginate has
exceptional pH sensitivity and can quickly form gels under
incredibly mild conditions (Maity and Das, 2021).

Proteins
Proteins used for hydrogels synthesis include collagen, gelatin,

silk fibroin (SF), and polydopamine (PDA).
As the most prevalent protein in the ECM, collagen has a

triple helix shape that offers high tensile strength. Since natural
ECM contains a lot of collagen, collagen-based hydrogels are
becoming more and more common as scaffolds for tissue
engineering. Type I collagen is by far the most common kind
of collagen among the other types. Collagen’s structural flexibility
enables cross-linking to create a three-dimensional porous
fibrous meshwork that makes extracellular vesicles (Evs)
loading easier (Antoine et al., 2014).

The processing, molecular weight, and isoelectric point of
collagen have a significant impact on the characteristics of

gelatin, a partially hydrolyzed derivative of collagen (Salahuddin
et al., 2021). Gelatin, as opposed to collagen, has greater temperature
stability and biocompatibility (Mahmood et al., 2022). Gelatin
methacrylate (GelMA), a composite improved form of gelatin
hydrogel, was created in 2000 by Bulcke et al. (Van Den Bulcke
et al., 2000) and is a typical form of hydrogels. Methacrylic
anhydride and gelatin make up the photosensitive biohydrogel
material known as GelMA, which can be activated by ultraviolet
(UV) or visible light to create three-dimensional structures strong
enough to sustain cell growth and differentiation (Kurian et al.,
2022).

Sericin protein (SF) is a natural polymeric protein polymer
extracted from natural silk and widely used in biomanufacturing. SF
is highly biocompatible, biodegradable, and has a high tensile
biomechanical strength (Lujerdean et al., 2022). Because SF
biopolymers naturally form regular-sheet stacks, they can be
treated to create hydrogels that are only physically cross-linked
without the use of chemical cross-linking agents (Ju et al., 2023).

Polydopamine (PDA) is a biopolymer created when dopamine
undergoes oxidative polymerization (Li et al., 2021b). PDA is easily
and cheaply made without the use of hazardous solvents, and as a
result, it has low cytotoxicity and high biocompatibility (>80%).
PDA has also been demonstrated to improve cell adhesion and
proliferation (Li et al., 2021b). Additionally, PDA is especially suited
for biological applications because of its hydrophilicity and capacity
to functionalize a variety of substrates.

Synthetic polymers
By crosslinking synthetic hydrophilic polymers, such as

polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylic
acid and its derivatives, polylactic acid-hydroxy acetic acid

FIGURE 4
Hydrogels classification.
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copolymer (PLGA), and phenoxyethyl methacrylate (PHEMA),
synthetic hydrogels are created (Ju et al., 2023).

Compared with natural polymers, synthetic polymers contain
particular molecular weights and fundamental structural units, and
can be pre-designed to get desired qualities, such as particular
porosity, degradation times, and tensile properties (Sánchez-Cid
et al., 2022).

Synthetic hydrogels have a reliable material source and a longer
quality guarantee period, with wider varieties and stable properties.
However, the synthesis process may introduce chemical cross-
linking agents and other toxic components. Their degradability
and biocompatibility are poor (El-Sherbiny and Yacoub, 2013;
Naahidi et al., 2017; Catoira et al., 2019).

Hydrogels classification

There are different types of hydrogels according to different
classification methods. Except for the natural hydrogels and
synthetic hydrogels mentioned above, we classify the hydrogels
by their size, crosslinking modes, and properties (See Figure 4).

Size
According to the different sizes and shapes of hydrogels, there

are macroscopic gels and microscopic gels (microspheres).
Macroscopic gels can be divided into columnar, porous sponge,
fibrous, membrane, and spherical according to the different shapes.
The microscopic gels include micron-sized microspheres and nano-
sized microspheres.

Particulate hydrogels with particle sizes in the micron and
nanometer ranges, respectively, are known as microgels (hydrogel
microspheres) and nanogels. Microgels and nanogels can be
directly injected since they are significantly smaller than the
inner diameter of a syringe needle than macroscopic
hydrogels. Additionally, their greater relative surface area
improves the capacity to penetrate tissue barriers and aids
natural clearance. Different hydrogel sizes are suited for
various drug delivery methods. For instance, microgels with a
diameter of fewer than 5 nm are typically employed for
pulmonary or oral delivery but are frequently viewed as
unsuitable for intravascular injection due to their quicker
circulation clearance rates. Because they can exit tiny blood
arteries through the windows opened by the endothelium
lining, nanogels with diameters between 10 and 100 nm are
appropriate for systemic delivery and allow extravasation into
tissue (Li and Mooney, 2016).

Cross-linking methods
Hydrogels can be divided into physical crosslinking and

chemical crosslinking according to the bonding mode of the
network structure.

Physical crosslinking refers to the formation of a cross-linked
network structure through polymer chain entangling,
crystallization points, or other weak interactions (such as ionic
bonds, van der Waals forces, hydrogen bonds, etc.) without the
formation of new bonds. Due to the formation of cluster
structures between molecules during physical crosslinking, the
uniformity of crosslinking is poor. Moreover, the mechanical

strength and gel time of hydrogel were affected and the
degradation process was hindered due to the defects of the
network structure.

Chemical crosslinking refers to the formation of new covalent
bonds, which form a three-dimensional network structure between
molecules through copolymerization or condensation reaction. This
kind of hydrogel is permanent and irreversible, and cannot be
dissolved or fused by heating, which is also known as true gel.
The common bonds and modes of chemical crosslinking are Schiff
base reaction, Michael addition reaction, and light/heat initiated
crosslinking.

Self-healing hydrogels
The use of self-healing hydrogels in 3D printing,

medication delivery, and tissue regeneration has shown
considerable promise (Mondal and Chatterjee, 2022; Bertsch
et al., 2023). Self-healing hydrogels are often created using
dynamic covalent bonding or non-covalent interaction
principles. These hydrogels’ capacity for self-healing enables
them to conform to damaged tissues and organs, hence
enabling their protection. Additionally, the self-healing
hydrogels have injectable qualities: under high shear
conditions, it briefly become fluid before returning to their
gel state. Importantly, the self-healing hydrogel is physically
stable in place, making it possible for the encapsulated drug to
be protected for a longer period of time and, as a result, to
release drugs slowly. Physical crosslinking causes the shear-
thinning characteristic (Ju et al., 2023).

Conductive hydrogels
Cellular actions that can encourage cytokine release and

enhance the microenvironment of damaged tissue are
controlled by bioelectrical signals, which are essential. In
order to create composite conductive hydrogels, conductive
nanomaterials like graphene and carbon nanotubes as well as
conductive polymers like polyaniline and polypyrrole are
frequently integrated into hydrogel networks (Walker et al.,
2019).

Stimulus sources
Stimuli-responsive hydrogels are aqueous-swollen polymer

networks that have the ability to perform a volume phase
transition on the basis of external stimuli (Jalili et al., 2017).
They can respond to a variety of external stimuli, changing their
structure, physical makeup, chemical composition, or mechanical
properties (Mellati et al., 2021).

Hydrogels are primarily split into three categories based on
the types of stimulus sources: physical-responsive hydrogels,
chemical-responsive hydrogels, and biochemical-responsive
hydrogels. By the design of polymer molecules, the character
of the hydrogels can be changed, which makes them more
“smart” (Chang et al., 2022).

Hydrogels and bone tissue repair

Bone tissue engineering, as a new technological innovation,
helps to create three-dimensional substitutes similar to the
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human bone tissue thereby maintaining the bone’s structural as
well as functional integrity. Scaffolds play a vital role in the bone
tissue engineering aspect, which forms the bioengineered
structure. Among the scaffold materials, hydrogels have
porous structures which simulate the extracellular matrix and
can serve as a carrier to facilitate growth factor promotion
(Nallusamy and Das, 2021). With their hydrophilic nature,
three-dimensional structure, and comparable ECM
components, hydrogels are appropriate scaffolds for cellular
infiltration, adhesion, growth, proliferation, migration, and
differentiation. They are also easily chemically changeable and
can be further modified to demonstrate a favorable degradation
profile and mechanical integrity. It has been demonstrated that
hydrogels derived from natural bone tissue, particularly those
from periosteal and demineralized bone matrix sources, can
promote osteoconduction and osteoinduction (Xia and Chen,
2022).

Hydrogels coated exosomes

Although exosomes have many benefits and their therapeutic
effect are promising, they still have some drawbacks (Shiue et al.,
2019). Exosomes must be absorbed by the targeted cell by
endocytosis in order for their biological effects to be triggered;
otherwise, they would be quickly eliminated from the blood
circulation and might even build up in the liver, spleen, lungs,
and digestive system. Direct injections of exosomes
intravenously, intraperitoneally, or subcutaneously may cause
macrophages in the reticuloendothelial system to respond, which
may result in their rejection. After interacting with sweat, tears,
and the epithelial barrier (tight junctions), bodily and topical
treatments on the skin or ocular surfaces have demonstrated
limited half-lives. What’s more, the costly manufacturing
methods that demand consistency and purity of nanometer-
sized biomaterials are the root of the challenges in exosome
purification and mass production. Exosome delivery, therefore,
requires a more effective means of avoiding clearance by the host
organism (Khayambashi et al., 2021). The most appropriate way
to use exosomes in regenerative medicine is to combine them
with biomaterials (Shi et al., 2017). Hydrogels, as versatile
nanomaterials which can mimic natural tissue, have been
extensively utilized as a vehicle for the local medication
delivery of treated exosomes. Hydrogels’ hydrophilic and
cross-linking properties aid in their capacity for controlled
medication release (Khayambashi et al., 2021). Exosomes from
various cell origins have so far been enclosed in hydrogels made
of HA, gelatin, chitosan, and polypeptides (Qin et al., 2016; Liu
et al., 2017).

Preparation methods of hydrogels coated
exosomes

Three strategies were mentioned in a review by Parisa
Khayambashi et al. to make hydrogels coated exosomes: 1)
Exosomes and hydrogels are combined, then crosslinkers are
added to cause gelation. 2) Physical incorporation of hydrogels

or “breathing” technique. (Two basic steps are involved: the already
inflated hydrogels are submerged in a solvent in order to remove the
water from the hydrogel; then the hydrogels are soaked in an
aqueous solution containing the exosomes, making the breathing-
in of the exosomes into the porous hydrogel. 3) Simultaneous
blending of the exosomes with the crosslinkers and the exosomes
in solution, causing an in situ gelation that enables the exosomes to
be delivered specifically (Khayambashi et al., 2021). Figure 5
demonstrates the preparation methods of hydrogels coated
exosomes.

Hydrogels coated exosomes and bone
diseases

We have summarized the application of hydrogels coated
exosomes in bone defect, osteoarthritis/cartilage defect,
intervertebral disc degeneration, and rotator cuff tear/tendon
repair (See Figure 6). Previous studies showed the potential
therapeutic effect of hydrogels coated exosomes on these
diseases.

Hydrogels coated exosomes in bone defect
A safe and effective treatment must be utilized to achieve

bone tissue regeneration and repair since bone defects brought
on by trauma, bone tumor removal, infection (such as
osteomyelitis) and other diseases have emerged as major
problems substantially impacting patients’ limb function
(Chang et al., 2022). There are studies showing hydrogels
coated exosomes have the potential therapeutic effect on the
bone defect. Li Wang et al. studied a new type of self-healing
hydrogels using coralline hydroxyapatite (CHA)/silk fibroin
(SF)/glycol chitosan (GCS)/difunctionalized polyethylene
glycol (DF-PEG) and made it a carrier of HucMSCs (human
umbilical cord) derived exosomes. They injected the mixture of
exosomes and hydrogels into the femoral condyle defect area in
SD rats and found the bone defect area had effectively healed
(Wang et al., 2020b). In another study, Zhang Yuntong et al.
used hyaluronic acid hydrogel (HA-Gel)-encapsulated
umbilical MSC-derived exosomes (uMSCEXOs) in
conjunction with specialized nanohydroxyapatite/
polycaprolactone (nHP) scaffold folds to heal cranial lesions
in rats and demonstrated the uMSCEXOs combined with the
novel composite can stimulate both angiogenesis and
osteogenesis in a critical-size cranial defect model (Zhang
et al., 2021a). Rui Li et al. injected the adipose-derived
exosomes loaded by gelatine hydrogels into a rat skull defect
model and found it can regulate bone immune metabolism and
promote bone healing (Li et al., 2022).

Hydrogels coated exosomes in osteoarthritis/
cartilage defect

Osteoarthritis (OA) is a common bone disease that can
cause joint pain, stiffness, and limited activity, which is the
main cause of disability in the elderly. OA is primarily
characterized by degenerative cartilage lesions. Chondrocytes
and extracellular matrix make up the majority of the cartilage in
the joint while there are no blood vessels or nerves.
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FIGURE 5
Methods to make hydrogels coated exosomes.

FIGURE 6
Hydrogels-coated exosomes have a potential therapeutic effect on bone diseases. (A): Bone defect (B): Knee osteoarthritis (C): Intervertebral disc
degeneration (D): Rotator cuff tear.
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Chondrocytes, which are highly differentiated cells, react
primarily by synthesizing and secreting the cartilage matrix,
which is crucial for preserving the metabolic equilibrium of
cartilage tissue (Liang et al., 2021b). There is currently no
medication that can stop the progression of OA. Surgical
intervention may solve the problems, but any surgery has
risks and the possibility of failure. To date, injecting
therapeutic materials into the joint cavity has become a new
treatment method for osteoarthritis. And hydrogels-coated
exosomes have been reported to have the function of
attenuating cartilage degradation and enhancing cartilage
regeneration, which shows an attractive prospect in the
treatment of osteoarthritis (Zhang et al., 2021c; Luo et al.,
2022; Shen et al., 2022). Yu Zhang et al. studied the
thermosensitive gel with poloxamers as a delivery platform
for PRP (platelet-rich plasma) -Exosomes, finding the new
therapy can induce cartilage proliferation and inhibit
cartilage degradation in subtalar osteoarthritis rat model
(Zhang et al., 2022). Xuehan Sang et al. used thermosensitive
hydrogel loaded with chondrocyte-derived exosomes to treat
damaged cartilage and proved its function to relieve OA
through positively regulating chondrocytes on the
proliferation, migration, and differentiation (Sang et al.,
2022). Gelatin methacrylate loaded with MSCs exosomes was
described to fabricate a 3D-printed decellularized extracellular
matrix (ECM), according to Chen et al. (Mahmood et al., 2022).
This technology made it possible to create radically directed
channels, which improve cartilage regeneration by controlling
chondrocyte migration and healing osteochondral defects.
Fang-Xue Zhang et al. (Zhang et al., 2021c) discussed the
effect of an injectable mussel-inspired highly adhesive
hydrogel with exosomes to repair cartilage defects in rat
patellar grooves, which can be a potential treatment for
cartilage defects. Xiaolin Liu et al. reported photoinduced
imine crosslinking (PIC) hydrogel coated MSCs exosomes
and demonstrated its ability to facilitate articular cartilage
regeneration (Liu et al., 2017).

Hydrogels coated exosomes in intervertebral disc
degeneration

The intervertebral disc has the function of increasing the
range of spinal motion, bearing pressure, cushioning vibration,
and protecting the brain and spinal cord. Similar to
osteoarthritis, degenerative intervertebral disc disease is also a
common orthopedic condition, having a severe impact on
people’s life quality. Intervertebral disc consists of fibrous
ring, nucleus pulposus and hyaline cartilage plate. The ECM’s
imbalance of catabolism and anabolism as well as changes in the
intervertebral disc microenvironment are the primary causes of
intervertebral disc degeneration (Binch et al., 2021). MSCs
transplantation can be a treatment method for intervertebral
disc degeneration (Sakai and Andersson, 2015). However, stem
cell transplantation still faces potential risks of in vivo survival,
immunogenicity, and tumorigenicity (Hao et al., 2017). MSCs-
derived exosomes can inherit MSCs’ properties, restrain the
aptosis of nucleus pulposus cells and promote ECM synthesis,
thus mitigating inflammatory responses. What’s more, low
immunogenicity makes exosomes an ideal therapeutic material

for intervertebral disc degeneration (Xing et al., 2021). However,
the interaction time of exosome injection alone is too short to
achieve long-term effects. So, it’s proper to load the exosomes
into a container. Hydrogels, as mentioned before, show stable
property and biocompatibility and can serve as the carrier of
exosomes. As for the applications of hydrogels coated exosomes
on intervertebral disc degeneration, some studies have been done.
Liwen Luo et al. tried to inhibit intervertebral disc degeneration
by injecting transcostal cartilage ECM modified hydrogels coated
exosomes from cartilage endplate stem cells into the impaired
intervertebral disc. They collected intervertebral disc samples
from rats and patients who underwent elective intervertebral
removal surgery. The outcomes revealed that the compound
material can release exosomes stably and prevent the
degeneration of intervertebral disc (Luo et al., 2022). Ming
Guan et al. developed an injectable, self-healing biocompatible
hydrogel to load MSCs-Exosomes and drew the conclusion that
the hydrogels coated exosomes can treat disc degeneration by
attenuating nucleus pulposus cellular senescence (Guan et al.,
2023).

Hydrogels coated exosomes in rotator cuff tear/
tendon repair

The rotator cuff is composed of the tendons of the
supraspinatus, infraspinatus, teres minor and subscapularis
muscles. It’s an important structure to maintain shoulder
stability. Rotator cuff tear is a common injury in sports.
Tendon-bone interface recovery is the key factor in rotator cuff
tear repair. The formation of fibrovascular scar tissue after rotator
cuff injury can affect tendon-bone healing (Gulotta et al., 2009).
Currently, biological intervention is applied to treat rotator cuff
tear to promote tendon-bone healing, which may be crucial for
preventing retear (Zhang et al., 2021d). With the discovery of
exosomes and the emergence of various hydrogels, there are
researches focusing on rotator cuff tear repair using the
combination of the two materials. Jiangyu Cai et al. evaluated
the effect of sodium alginate hydrogel coated Kartogenin-
Preconditioned MSCs exosomes on the rotator cuff tear model
of the rat. The outcomes showed that it can accelerate the rotator
cuff tendon-bone repair, enhancing its biomechanical properties
(Cai et al., 2023). Xiaopeng Tong et al. analyzed the function of
hydrogels coated human urine-derived stem cells (USCs)
exosomes on a rat rotator cuff tear model. The results proved
its ability to heal tendon-bone interface (Tong et al., 2023). Jinwei
Lu et al. developed GelMA hydrogels coated platelet-derived
exosomes and verified their capacity to promote tendon stem/
progenitor cell proliferation and regeneration, facilitating tendon
repair (Lu et al., 2023).

Conclusion

Exosomes are a subset of extracellular vesicles with a diameter of
30–200 nm. Their applications in bone tissue repair have been
studied. Hydrogels have 3D structure work and can be used in
tissue repair as well as drug carriers. A combination of the exosomes
and the hydrogels may utilize their advantages and make up for the
disadvantages. We summarize the hydrogels coated exosomes in
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bone tissue repair and reviewed their therapeutic effects on the bone
defect, osteoarthritis/cartilage defect, intervertebral disc
degeneration, and rotator cuff tear/tendon repair. Hydrogels
coated exosomes are promising, and their role in bone tissue
repair needs to be further explored. In the future, through the
improvement of exosomes extraction and hydrogels synthesis,
hydrogels coated exosomes are expected to play a greater role in
the diagnosis and treatment of orthopedic diseases, solving bone
tissue repair problems.
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