20 research outputs found
Estimation of advective methane flux in gas hydrate potential area offshore SW Taiwan and its tectonic implications
With the discoveries of Bottom Simulating Reflectors (BSRs), large and dense chemosynthetic communities and rapid sulfate reductions in pore space sediments, gas hydrates may exist in offshore southwestern Taiwan. Methane concentrations in pore space sediments have been measured to investigate if fluids and gases are derived from dissociation of gas hydrates. Very high methane concentrations and very shallow depths of sulfate methane interface (SMI) imply the high methane flux underneath the seafloor. Linear sulfate gradients, low total organic carbon (TOC) have been combined to describe the process of anaerobic methane oxidation (AMO) and calculate the iffusive
methane flux in Chuang et al. (2010). However, the appearance of concave (or non-linear) profiles of sulfate in some cores might indicate advective fluid flows. Hence, the methane flux may be much greater under advective conditions. In this study, numerical transport-reaction models were applied to calculate the methane flux including diffusion and advection of dissolved sulfate and methane and the anaerobic methane oxidation of methane. According to the modeled results of three giant piston cores (MD05-2911, MD05-2912 and MD05-2913) collected during the r/v Marion Dufresne cruise in 2005, gas bubbling or bioirrigation may occur in these site. Values of the methane flux ranging from 1.91 to 5.17 mmol m-2yr-1 and upward fluid flow velocities around 0.05-0.13 cm yr-1 are related to different geologic structures in the active continental margin. Site MD05-2912 is located on the Tainan Ridge where anticlines and blind thrusts are the dominate structures. Site MD052911 is on the Yung-An Ridge characterized by emergent and imbricate thrusts
Methane Migration and Its Influence on Sulfate Reduction in the Good Weather Ridge Region, South China Sea Continental Margin Sediments
Bacteria sulfate reduction is a major pathway for organic carbon oxidation in marine sediments. Upward diffusion of methane from gas hydrate deep in the sedimentary strata might be another important source of carbon for sulfate reducing bacteria and subsequently induce higher rates of sulfate reduction in sediments. Since abundant gas may migrate upward to the surface as a result of tectonic activity occurring in the accretionary wedge, this study investigates the effect of methane migration on the sulfate reduction process in continental margin sediments offshore southwestern Taiwan. Piston and gravity core samples were taken in order to evaluate vertical and spatial variations of sulfate and methane. Pore water sulfate, sulfide, methane, sediment pyrite, and organic carbon were extracted and analyzed
Distribution and Characters of Gas Hydrate Offshore of Southwestern Taiwan
Bottom simulating reflector (BSR) is a key indicator for the presence of gas hydrate beneath the sea floor. Widely distributed BSRs have been observed in the area offshore of southwestern Taiwan where the active accretionary complex meets with the passive China continental margin. In order to better understand the distribution and characters of the gas hydrate in the region, closely spaced (1.86-km line spacing) multichannel seismic reflection surveys have been conducted in recent years under the support of the Central Geological Survey, ROC. Over 10000 km of multichannel seismic reflection profiles have been collected that cover an area of about 10000 km2 offshore of southwestern Taiwan. BSRs can be identified along 50% of the seismic profiles that we collected. A newly compiled BSR distribution map suggests that gas hydrates are distributed both in the passive margin of the China continental slope as well as in the submarine Taiwan accretionary wedge, from water depths of 500 to over 3000 m. Gas hydrates are most concentrated underneath anticlinal ridges in the accretionary wedge, and underneath the slope ridges of the passive continental margin that were formed due to sedimentary processes. Active fluid activities are evident from various features observed on seismic reflection and chirp sonar profiles, such as mud volcanoes, gas plumes and gas charged shallow sedimentary layers. Fluid migration model has been established from a set of pseudo 3D seismic reflection data. The predicted locations of high fluid flux correlate well with those interpreted from geochemical analyses that show very high methane concentrations and very shallow sulfate-methane interfaces (SMI). This demonstrates the importance of structural control over gas hydrate emplacement. From the observed gas hydrate distribution and characters, the area offshore of southwestern Taiwan provides an ideal place to study and compare the formation and migration of gas hydrates under different tectonic settings
Estimating the composition of gas hydrate using 3D seismic data from Penghu Canyon, offshore Taiwan
Direct measurements of gas composition by drilling at a few hundred meters below seafloor can be costly, and a remote sensing method may be preferable. The hydrate occurrence is seismically shown by a bottom-simulating reflection (BSR) which is generally indicative of the base of the hydrate stability zone. With a good temperature profile from the seafloor to the depth of the BSR, a near-correct hydrate phase diagram can be calculated, which can be directly related to the hydrate composition. However, in the areas with high topographic anomalies of seafloor, the temperature profile is usually poorly defined, with scattered data. Here we used a remote method to reduce such scattering. We derived gas composition of hydrate in stability zone and reduced the scattering by considering depth-dependent geothermal conductivity and topographic corrections. Using 3D seismic data at the Penghu canyon, offshore SW Taiwan, we corrected for topographic focusing through 3D numerical thermal modeling. A temperature profile was fitted with a depth-dependent geothermal gradient, considering the increasing thermal conductivity with depth. Using a pore-water salinity of 2%, we constructed a gas hydrate phase model composed of 99% methane and 1% ethane to derive a temperature depth profile consistent with the seafloor temperature from in-situ measurements, and geochemical analyses of the pore fluids. The high methane content suggests predominantly biogenic source. The derived regional geothermal gradient is 40°C km-1. This method can be applied to other comparable marine environment to better constrain the composition of gas hydrate from BSR in a seismic data, in absence of direct sampling
Extremely High Methane Concentration in Bottom Water and Cored Sediments from Offshore Southwestern Taiwan
It has been found that Bottom Simulating Reflections (BSRs), which infer the existence of potential gas hydrates underneath seafloor sediments, are widely distributed in offshore southwestern Taiwan. Fluids and gases derived from dissociation of gas hydrates, which are typically methane enriched, affect the composition of seawater and sediments near venting areas. Hence, methane concentration of seawater and sediments become useful proxies for exploration of potential gas hydrates in a given area. We systematically collected bottom waters and sedimentary core samples for dissolved and pore-space gas analyses through five cruises: ORI-697, ORI-718, ORII-1207, ORII-1230, and ORI-732 from 2003 to 2005 in this study. Some sites with extremely high methane concentrations have been found in offshore southwestern Taiwan, e.g., sites G23 of ORI-697, N8 of ORI-718, and G96 of ORI-732. The methane concentrations of cored sediments display an increasing trend with depth. Furthermore, the down-core profiles of methane and sulfate reveal very shallow depths of sulfate methane interface (SMI) at some sites in this study. It implies sulfate reduction being mainly driven by the process of anaerobic methane oxidation (AMO) in sediments; thus indicating that there is a methane-enriched venting source, which may be the product of dissociation of gas hydrates in this area
Petrology and Mineralogy of Tertiary(?) Volcanic Rocks of Snowville Area, Utah, and Tertiary-Quaternary(?) Volcanic Rocks of Table Mountain and Holbrook Areas, Idaho
Basalt flows occur in the Snowville area of north-central Utah and the Table Mountain and Holbrook areas of south-central Idaho. All basalt flows are aphanitic in groundmass, and contain olivine, plagioclase, augite, and opaque oxides. They can be distinguished by texture. Snowville basalt has predominantly subophitic to intergranular textures. Table Mountain basalt is fine grained, with stumpy groundmass plagioclase and equant ilmenite crystals. Holbrook basalt has pilotaxitic to intergranular textures, with the presence of plagioclase phenocrysts and characteristic exsolution lamellae in Fe-Ti oxides. The olivine grains in Holbrook area are intensely oxidized to Fe-Ti oxides.
Snowville basalt contains olivine phenocrysts (Fo88 -Fo44 ) in a groundmass of olivine (Fo63 -Fo47), augite (Wo42 -Wo36), and plagioclase (An77-An52). The lower flow unit of Table Mountain basalt contains olivine phenocrysts (Fo88-?) in a groundmass of augite (Wo44 En44 Fs17), and plagioclase (An58-An48). The upper flow unit of Table Mountain basalt has olivine phenocrysts (Fo82-Fo65), plagioclase phenocrysts (An73-An67), and plagioclase groundmass (An64-An55). The Holbrook basalt is composed of olivine phenocrysts (Fo67-Fo57)and plagioclase phenocrysts (An68-An43 ) in a groundmass of olivine (Fo59Fos53) augite (Wo39 En44 Fs17), and plagioclase (An67-An35). The basalts of the Snowville and Holbrook areas, represent petrographic, mineralogical, and chemical characteristics of both olivine-tholeiitic basalt and alkali-olivine basalt, whereas Table Mountain upper and lower flow units show their affinity with alkali-olivine basalt. Chemically, basalts from these three areas are consistently high in silica, magnesium, and alkali content. The Snowville basalt has a high Ba content and high strontium isotope ratio.
Fractional crystallization models indicate that the basalt flows from the three different areas are genetically unrelated. The testing also suggests that the upper and lower flow units of the Table Mountain area are not genetically related. The basalts of the three areas also can not be evolved from the basalts found at Kelton, the Rozel Hills or Black Mountain. Basalts of the Snowville area have consistently higher magnesium and silica contents than Snake River basalt, Kelton area basalt, and Rozel Hills and Black Mountain basalt, indicating that they may represent what was initially a very primitive basaltic lava. High Ba content and strontium isotope ratio indicate that the Snowville basalt was contaminated by crustal material.
Table Mountain and Holbrook basalt may have formed as a result of partial melting from a pyrolite or garnet peridotite mantle
MODELING NATURAL GAS HYDRATE EMPLACEMENT: A MIXED FINITE-ELEMENT FINITE-DIFFERENCE SIMULATOR
Gas hydrates are ice-like crystalline solids composed of a hydrogen bonded water lattice entrapping low-molecular weighted gas molecules commonly of methane. These form under conditions of relative high pressure and low temperature, when the gas concentration exceeds those which can be held in solution, both in marine and on-land permafrost sediments. Simulating the mechanisms leading to natural gas hydrate emplacement in geological environments requires the modeling of the temperature, the pressure, the chemical reactions, and the convective/diffusive flow of the reactive species. In this study, we take into account the distribution of dissolved methane, methane gas, methane hydrate, and seawater, while ice and water vapor are neglected. The starting equations are those of the conservation of the transport of momentum (Darcy’s law), energy (heat balance of the passive sediments and active reactive species), and mass. These constitutive equations are then integrated into a 2-dimentional finite element in space, finite-difference in time scheme. In this study, we are able to examine the formation and distribution of methane hydrate and free gas in a simple geologic framework, with respect to geothermal gradient, dewatering and fluid flow, the methane in-situ production and basal flux. The temperature and pressure fields are mildly affected by the hydrate emplacement. The most critical parameter in the model appears to be the methane (L+G) and hydrate (L+G+H) solubility: the decrease in methane solubility beneath the base of the hydrate stability zone (BHSZ) critically impacts on the presence of free gas at the base of the BHSZ (thus the presence of a BSR), while the sharp decrease of hydrate solubility above the BHSZ up to the sea bottom critically impact on the amount of methane available for hydrate emplacement and methane seep into the water column.Non UBCUnreviewe
Shallow Crustal Thermal Structures of Central Taiwan Foothills Region
Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts