58 research outputs found

    Theory and technique of permeability enhancement and coal mine gas extraction by fracture network stimulation of surrounding beds and coal beds

    Get PDF
    AbstractThe existing reservoir stimulating technologies are only applicable to hard coal but helpless for soft coal, which is one of the main factors hindering the CBM industrialization in China. Therefore, it is urgent to develop a universal stimulating technology which can increase the permeability in various coal reservoirs. Theoretical analysis and field tests were used to systematically analyze the mechanical mechanisms causing the formation of various levels and types of fractures, such as radial tensile fractures, peripheral tensile fractures, and shear fractures in hydraulic fracturing, and reveal the mechanism of permeability enhancement by fracture network stimulating in surrounding beds and coal reservoirs. The results show that multi-staged perforation fracturing of horizontal wells, hydraulic-jet staged fracturing, four-variation hydraulic fracturing and some auxiliary measures are effective technical approaches to fracture network stimulation, especially the four-variation hydraulic fracturing can stimulate the fracture network in vertical and cluster wells. It is concluded that the fracture network stimulating technology for surrounding beds has significant advantages, such as safe drilling operation, strong stimulation effect, strong adaptability to stress-sensitive and velocity-sensitive beds, and is suitable for coal reservoirs of any structure. Except for the limitation in extremely water-sensitive and high water-yield surrounding beds, the technology can be universally used in all other beds. The successful industrial tests in surface coal bed methane and underground coal mines gas extraction prove that the theory and technical system of fracture network stimulating in surrounding beds and coal reservoirs, as a universally applicable measure, will play a role in the CBM development in China

    Construction and Characterization of a Chimeric Virus (BIV/HIV-1) Carrying the Bovine Immunodeficiency Virus \u3ci\u3egag\u3c/i\u3e-\u3ci\u3epol\u3c/i\u3e Gene: Research Letters

    Get PDF
    HIV-1HXB2 5′LTR region, most of BIVR29 gag-pol segment and HIV-1HXB2 pol IN-3′LTR region were respectively amplified. A chimeric clone, designated as pHBIV3753, was constructed by cloning three fragments sequentially into pUC18. MT4 cells were transfected with pHBIV3753. The replication and expressions of the chimeric virus (HBIV3753) were monitored by RT activity and IFA. The results firstly demonstrated that it is possible to generate a new type of the BIV/HIV-1 chimeric virus containing BIV gag-pol gene

    64-fs L-band pulse generation by an all-fibre Er-doped laser

    Get PDF
    We demonstrate a L-band all-fibre erbium-doped laser mode-locked by nonlinear polarisation rotation. The use of a single gain segment with appropriate length and dispersion and a L-band optimised Brewster fibre grating as an in-fibre polariser enables the generation of 64-fs pulses at 1.59µm

    Patterns of Convergence and Divergence Between Bipolar Disorder Type I and Type II: Evidence From Integrative Genomic Analyses

    Get PDF
    Aim: Genome-wide association studies (GWAS) analyses have revealed genetic evidence of bipolar disorder (BD), but little is known about the genetic structure of BD subtypes. We aimed to investigate the genetic overlap and distinction of bipolar type I (BD I) & type II (BD II) by conducting integrative post-GWAS analyses. Methods: We utilized single nucleotide polymorphism (SNP)-level approaches to uncover correlated and distinct genetic loci. Transcriptome-wide association analyses (TWAS) were then approached to pinpoint functional genes expressed in specific brain tissues and blood. Next, we performed cross-phenotype analysis, including exploring the potential causal associations between two BD subtypes and lithium responses and comparing the difference in genetic structures among four different psychiatric traits. Results: SNP-level evidence revealed three genomic loci, SLC25A17, ZNF184, and RPL10AP3, shared by BD I and II, and one locus (MAD1L1) and significant gene sets involved in calcium channel activity, neural and synapsed signals that distinguished two subtypes. TWAS data implicated different genes affecting BD I and II through expression in specific brain regions (nucleus accumbens for BD I). Cross-phenotype analyses indicated that BD I and II share continuous genetic structures with schizophrenia and major depressive disorder, which help fill the gaps left by the dichotomy of mental disorders. Conclusion: These combined evidences illustrate genetic convergence and divergence between BD I and II and provide an underlying biological and trans-diagnostic insight into major psychiatric disorders

    Generation of 64-fs L-band stretched pulses from an all-fibre Er-doped laser

    Get PDF
    We demonstrate an L-band all-fibre erbium-doped laser mode locked by nonlinear polarisation rotation and working in the stretched-pulse regime. The use of a single segment of gain fibre with appropriate length and dispersion and a Brewster fibre grating optimised for the L band as an in-fibre polariser enables the generation of pulses at 1.59-μm central wavelength, which can be linearly compressed to 64-fs duration. Numerical simulations of the laser model support our experimental findings. Our laser design gives a route towards low-cost and low-complexity fibre-integrated laser sources for applications requiring L-band ultrashort pulses

    Study on determination of development height of mining-induced fissure zone in deep outburst coal seam

    No full text
    The use of high-level directional long borehole gas extraction technology instead of high-level extraction roadway to extract mining pressure relief gas can greatly reduce the amount of rock roadway excavation. And it can effectively relieve the tension situation of mine mining replacement. Moreover, it can achieve remarkable gas control effect. But the high-level directional long borehole gas extraction technology often has problems in practical application. Due to inaccurate determination of the development height range of the upper 'three zones' of mining overburden, the directional long borehole layout horizon is too high or too low. The application effect is poor. In order to solve this problem, taking the VI15-15050 working face of No. 8 Coal Mine of Henan Pingdingshan Tian'an Coal Mining Co., Ltd. as the research background, the development height of mining-induced fissure zone in the coal seam of the working face is determined by using empirical formula method and numerical simulation experiment method. The maximum development height of the caving zone is 13.2 m, and the maximum development height of the fissure zone is 48 m. The kilometer directional drilling rig is used to construct high-level directional long borehole in the VI15-15050 working face, and the fissure zone development height is verified. The results show that the lithology of overburden is relatively broken at 20 m from the roof of the coal seam, and the high concentration gas area in the fissure zone is more than 23 m from the roof. When the VI15-15050 working face is pushed to 105 m, the high-level directional long borehole and the fissure zone in the goaf have been fully communicated. The gas in the upper corner and return air flow of the VI15-15050 working face is kept at 0.47%. The maximum gas extraction volume fraction of a single hole of the high-level directional long borehole is 13.2%. The daily net gas extraction volume is kept at 3-4 m3/min, and the air distribution volume is calculated as 2500 m3/min. The gas extraction volume of high-level directional long boreholes can reach 25.5%-34.0% of the air exhaust gas volume. During this period, there is no gas overrun, and the high-level directional long boreholes arranged in the current layer can successfully control the gas in the upper corner and return air flow. The correctness of the development height of the fissure zone obtained by the two methods is verified

    Study of the Law of Hydraulically Punched Boreholes on Effective Gas Extraction Radius under Different Coal Outputs

    No full text
    Hydraulic punching technology has recently developed into an effective pressure relief measure and permeability enhancement method for soft and low permeability coalbeds. Different coal outputs directly affect the shape and size of boreholes as well as the effective extraction radius. Taking the Zhongmacun mine as an example, the influence of different coal outputs and different extraction periods on effective extraction radius was analyzed and studied through field tests and numerical simulation. The results show that the increase in coal outputs from hydraulic punching can improve the effective extraction radius of the boreholes. For example, when the gas extraction reaches 90 days, with a coal output of 0.5 t/m, 1.0 t/m, and 1.5 t/m, the effective extraction radius is 3.08 m, 3.46 m, and 3.83 m, respectively. The difference in gas extraction effect of different coal output boreholes increases significantly with the extension of the extraction time, but the speed of growth gradually decreases, which is consistent with the conclusions obtained on-site. This result has important practical significance for optimizing the technical parameters of hydraulic punching, guiding the accurate layout of extraction and drilling, and enhancing the effect of gas control in mines

    Application of comprehensive early warning system of coal and gas outburst

    No full text
    In view of problem that conventional coal and gas outburst forecasting technology used a single forecast indicator and cannot considering outburst risk factors synthetically, the paper designed a comprehensive early warning system of coal and gas outburst, and gave structure and functions of the system, and introduced application processes of the system taking Longshan Coal Mine as an example. The practical application results show that the early warning system can effectively detect dangerous area and realize early warning of coal and gas outburst

    Development of 1.3 GHz Medium-β (β = 0.634) Disk-Loaded Deflecting Cavity for 150 keV Electron Beam

    No full text
    A miniaturized 150 kV DC photocathode gun is developed at Peking University to generate electron beam which can be manipulated in temporal and spatial distribution as requirements freely. To measure the bunch length which is an important temporal parameter of the low energy electron beam from the DC photocathode gun, a 1.3 GHz medium-β disk-loaded deflecting cavity is adopted. In this paper we present the design of the deflecting cavity which involves the microwave design including the geometry optimization and the separation of the orthogonal dipole modes as well as the power coupling, the mechanical design including the determination of the cavity wall thickness and the tuning as well as brazing structure, and the thermodynamic analysis. Particle tracking simulation shows that the best resolution of 190 fs can be achieved for the 150 keV electron beam by using the deflecting cavity. Its fabrication is completed and the RF measurements are carried out with a vector network analyzer. It is shown the measured values of the RF physical parameters are in good agreement with the simulation design ones
    • …
    corecore