16 research outputs found

    GenTKG: Generative Forecasting on Temporal Knowledge Graph

    Full text link
    The rapid advancements in large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional carefully designed embedding-based and rule-based models dominate. The question remains open of whether pre-trained LLMs can understand structured temporal relational data and replace them as the foundation model for temporal relational forecasting. Therefore, we bring temporal knowledge forecasting into the generative setting. However, challenges occur in the huge chasms between complex temporal graph data structure and sequential natural expressions LLMs can handle, and between the enormous data sizes of tKGs and heavy computation costs of finetuning LLMs. To address these challenges, we propose a novel retrieval augmented generation framework that performs generative forecasting on tKGs named GenTKG, which combines a temporal logical rule-based retrieval strategy and lightweight parameter-efficient instruction tuning. Extensive experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting under low computation resources. GenTKG also highlights remarkable transferability with exceeding performance on unseen datasets without re-training. Our work reveals the huge potential of LLMs in the tKG domain and opens a new frontier for generative forecasting on tKGs.Comment: 8 pages, accepted to Temporal Graph Learning @ NeurIPS 202

    Hydrophobic cell surface display system of PETase as a sustainable biocatalyst for PET degradation

    No full text
    Remarkably, a hydrolase from Ideonella sakaiensis 201-F6, termed PETase, exhibits great potential in polyethylene terephthalate (PET) waste management due to it can efficiently degrade PET under moderate conditions. However, its low yield and poor accessibility to bulky substrates hamper its further industrial application. Herein a multigene fusion strategy is introduced for constructing a hydrophobic cell surface display (HCSD) system in Escherichia coli as a robust, recyclable, and sustainable whole-cell catalyst. The truncated outer membrane hybrid protein FadL exposed the PETase and hydrophobic protein HFBII on the surface of E. coli with efficient PET accessibility and degradation performance. E. coli containing the HCSD system changed the surface tension of the bacterial solution, resulting in a smaller contact angle (83.9 +/- 2 degrees vs. 58.5 +/- 1 degrees) of the system on the PET surface, thus giving a better opportunity for PETase to interact with PET. Furthermore, pretreatment of PET with HCSD showed rougher surfaces with greater hydrophilicity (water contact angle of 68.4 +/- 1 degrees vs. 106.1 +/- 2 degrees) than the non-pretreated ones. Moreover, the HCSD system showed excellent sustainable degradation performance for PET bottles with a higher degradation rate than free PETase. The HCSD degradation system also had excellent stability, maintaining 73% of its initial activity after 7 days of incubation at 40 degrees C and retaining 70% activity after seven cycles. This study indicates that the HCSD system could be used as a novel catalyst for efficiently accelerating PET biodegradation

    Hydrophobic cell surface display system of PETase as a sustainable biocatalyst for PET degradation

    No full text
    Remarkably, a hydrolase from Ideonella sakaiensis 201-F6, termed PETase, exhibits great potential in polyethylene terephthalate (PET) waste management due to it can efficiently degrade PET under moderate conditions. However, its low yield and poor accessibility to bulky substrates hamper its further industrial application. Herein a multigene fusion strategy is introduced for constructing a hydrophobic cell surface display (HCSD) system in Escherichia coli as a robust, recyclable, and sustainable whole-cell catalyst. The truncated outer membrane hybrid protein FadL exposed the PETase and hydrophobic protein HFBII on the surface of E. coli with efficient PET accessibility and degradation performance. E. coli containing the HCSD system changed the surface tension of the bacterial solution, resulting in a smaller contact angle (83.9 +/- 2 degrees vs. 58.5 +/- 1 degrees) of the system on the PET surface, thus giving a better opportunity for PETase to interact with PET. Furthermore, pretreatment of PET with HCSD showed rougher surfaces with greater hydrophilicity (water contact angle of 68.4 +/- 1 degrees vs. 106.1 +/- 2 degrees) than the non-pretreated ones. Moreover, the HCSD system showed excellent sustainable degradation performance for PET bottles with a higher degradation rate than free PETase. The HCSD degradation system also had excellent stability, maintaining 73% of its initial activity after 7 days of incubation at 40 degrees C and retaining 70% activity after seven cycles. This study indicates that the HCSD system could be used as a novel catalyst for efficiently accelerating PET biodegradation

    Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution

    No full text
    The widespread use of commercial polymers composed of a mixture of polylactic acid and polyethene terephthalate (PLA-PET) in bottles and other packaging materials has caused a massive environmental crisis. The valorization of these contaminants via cost-effective technologies is urgently needed to achieve a circular economy. The enzymatic hydrolysis of PLA-PET contaminants plays a vital role in environmentally friendly strategies for plastic waste recycling and degradation. In this review, the potential roles of microbial enzymes for solving this critical problem are highlighted. Various enzymes involved in PLA-PET recycling and bioconversion, such as PETase and MHETase produced by Ideonella sakaiensis; esterases produced by Bacillus and Nocardia; lipases produced by Thermomyces lanuginosus, Candida antarctica, Triticum aestivum, and Burkholderia spp.; and leaf-branch compost cutinases are critically discussed. Strategies for the utilization of PLA-PET's carbon content as C1 building blocks were investigated for the production of new plastic monomers and different value-added products, such as cyclic acetals, 1,3-propanediol, and vanillin. The bioconversion of PET-PLA degradation monomers to polyhydroxyalkanoate biopolymers by Pseudomonas and Halomonas strains was addressed in detail. Different solutions to the production of biodegradable plastics from food waste, agricultural residues, and polyhydroxybutyrate (PHB)-accumulating bacteria were discussed. Fuel oil production via PLA-PET thermal pyrolysis and possible hybrid integration techniques for the incorporation of thermostable plastic degradation enzymes for the conversion into fuel oil is explained in detail

    Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling

    No full text
    The massive waste of poly(ethylene terephthalate) (PET) that ends up in the landfills and oceans and needs hundreds of years for degradation has attracted global concern. The poor stability and productivity of the available PET biocatalysts hinder their industrial applications. Active PET biocatalysts can provide a promising avenue for PET bioconversion and recycling. Therefore, there is an urgent need to develop new strategies that could enhance the stability, catalytic activity, solubility, productivity, and re-usability of these PET biocatalysts under harsh conditions such as high temperatures, pH, and salinity. This has raised great attention in using bioengineering strategies to improve PET biocatalysts' robustness and catalytic behavior. Herein, historical and forecasting data of plastic production and disposal were critically reviewed. Challenges facing the PET degradation process and available strategies that could be used to solve them were critically highlighted and summarized. In this review, we also discussed the recent progress in enzyme bioengineering approaches used for discovering new PET biocatalysts, elucidating the degradation mechanism, and improving the catalytic performance, solubility, and productivity, critically assess their strength and weakness and highlighting the gaps of the available data. Discovery of more potential PET hydrolases and studying their molecular mechanism extensively via solving their crystal structure will widen this research area to move forward the industrial application. A deeper knowledge of PET molecular and degradation mechanisms will give great insight into the future identification of related enzymes. The reported bioengineering strategies during this review could be used to reduce PET crystallinity and to increase the operational temperature of PET hydrolyzing enzymes

    Solubility of H2S under Haloalkaliphilic Conditions: Experimental Measurement and Modeling with the Electrolyte NRTL Equation

    No full text
    Haloalkaliphilic biological desulfurization has been recognized as a promising technology due to its remarkable economy and good performance. The process removes H2S from gases using aqueous solutions of alkali carbonates. In this study, the solubility of H2S in an aqueous Na2CO3-NaHCO3 solution was first experimentally measured by a static analysis method at an operating pressure and temperature of biological desulfurization. An accurate and comprehensive thermodynamic model was developed based on the electrolyte nonrandom two-liquid model for the solubility of H2S in aqueous solutions of alkali carbonates. The solubility of H2S in pure water is predicted and compared favorably to previous literature, with the temperature varying from 298.16 to 377.45 K and pressure up to 39.6 bar. The average deviation of the model predictions compared to all experimental data is 0.95% for the solubility of H2S in an aqueous Na2CO3-NaHCO3 solution. This study will provide a valuable reference for the process design, simulation, and optimization of haloalkaliphilic biological desulfurization in the future

    Recent advances in microbial capture of hydrogen sulfide from sour gas via sulfur-oxidizing bacteria

    No full text
    Biological desulfurization offers several remarkably environmental advantages of operation at ambient temperature and atmospheric pressure, no demand of toxic chemicals as well as the formation of biologically re-usable sulfur (S-0), which has attracted increasing attention compared to conventionally physicochemical approaches in removing hydrogen sulfide from sour gas. However, the low biomass of SOB, the acidification of process solution, the recovery of SOB, and the selectivity of bio-S-0 limit its industrial application. Therefore, more efforts should be made in the improvement of the BDS process for its industrial application via different research perspectives. This review summarized the recent research advances in the microbial capture of hydrogen sulfide from sour gas based on strain modification, absorption enhancement, and bioreactor modification. Several efficient solutions to limitations for the BDS process were proposed, which paved the way for the future development of BDS industrialization

    Data_Sheet_1_Hydrophobic cell surface display system of PETase as a sustainable biocatalyst for PET degradation.docx

    No full text
    Remarkably, a hydrolase from Ideonella sakaiensis 201-F6, termed PETase, exhibits great potential in polyethylene terephthalate (PET) waste management due to it can efficiently degrade PET under moderate conditions. However, its low yield and poor accessibility to bulky substrates hamper its further industrial application. Herein a multigene fusion strategy is introduced for constructing a hydrophobic cell surface display (HCSD) system in Escherichia coli as a robust, recyclable, and sustainable whole-cell catalyst. The truncated outer membrane hybrid protein FadL exposed the PETase and hydrophobic protein HFBII on the surface of E. coli with efficient PET accessibility and degradation performance. E. coli containing the HCSD system changed the surface tension of the bacterial solution, resulting in a smaller contact angle (83.9 ± 2° vs. 58.5 ± 1°) of the system on the PET surface, thus giving a better opportunity for PETase to interact with PET. Furthermore, pretreatment of PET with HCSD showed rougher surfaces with greater hydrophilicity (water contact angle of 68.4 ± 1° vs. 106.1 ± 2°) than the non-pretreated ones. Moreover, the HCSD system showed excellent sustainable degradation performance for PET bottles with a higher degradation rate than free PETase. The HCSD degradation system also had excellent stability, maintaining 73% of its initial activity after 7 days of incubation at 40°C and retaining 70% activity after seven cycles. This study indicates that the HCSD system could be used as a novel catalyst for efficiently accelerating PET biodegradation.</p

    Image_1_Hydrophobic cell surface display system of PETase as a sustainable biocatalyst for PET degradation.pdf

    No full text
    Remarkably, a hydrolase from Ideonella sakaiensis 201-F6, termed PETase, exhibits great potential in polyethylene terephthalate (PET) waste management due to it can efficiently degrade PET under moderate conditions. However, its low yield and poor accessibility to bulky substrates hamper its further industrial application. Herein a multigene fusion strategy is introduced for constructing a hydrophobic cell surface display (HCSD) system in Escherichia coli as a robust, recyclable, and sustainable whole-cell catalyst. The truncated outer membrane hybrid protein FadL exposed the PETase and hydrophobic protein HFBII on the surface of E. coli with efficient PET accessibility and degradation performance. E. coli containing the HCSD system changed the surface tension of the bacterial solution, resulting in a smaller contact angle (83.9 ± 2° vs. 58.5 ± 1°) of the system on the PET surface, thus giving a better opportunity for PETase to interact with PET. Furthermore, pretreatment of PET with HCSD showed rougher surfaces with greater hydrophilicity (water contact angle of 68.4 ± 1° vs. 106.1 ± 2°) than the non-pretreated ones. Moreover, the HCSD system showed excellent sustainable degradation performance for PET bottles with a higher degradation rate than free PETase. The HCSD degradation system also had excellent stability, maintaining 73% of its initial activity after 7 days of incubation at 40°C and retaining 70% activity after seven cycles. This study indicates that the HCSD system could be used as a novel catalyst for efficiently accelerating PET biodegradation.</p

    Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation

    No full text
    PET hydmlase (PETase), discovered in Ideonella sakaiensis, is a promising agent for the biodegradation of polyethylene terephthalate (PET) capable of PET decomposition under mild reaction conditions with limited stability and productivity. Here, the immobilization of His-tagged PETase was achieved by synthesizing enzyme-inorganic nanoflowers, PETase@Co-3(PO4)(2), which was designed based on the principle of biomimetic mineralization. Immobilization of PETase onto nanostructured Co-3(PO4)(2) enjoys high enzyme loading and low mass transfer inhibition due to large specific surface area, high movement speed, and large surface curvature caused by small particle size. The nano-effect of inorganic carriers materialize the 10 degrees C optimum temperature swelling of the immobilized PETase with enhanced pH tolerance (6.0-10.0) than the free counterpart. The long-duration reaction showed that the productivity of terephthalic acid (TPA) was 3.5 times higher than that of the free enzyme. PETase@Co-3(PO4)(2) still retained 75% of the initial activity after 12 days compared with the free enzymes, which showed almost no activity. The excellent and stable catalytic performance of PETase@Co-3(PO4)( )2 with low cost demonstrates the synthetical usefulness of immobilization via biomimetic mineralization in the enzyme utilization in industrial PET depolymerization
    corecore