24 research outputs found

    Break-taking behaviour pattern of long-distance freight vehicles based on GPS trajectory data

    Get PDF
    This paper focuses on the break-taking behaviour pattern of long-distance freight vehicles, providing a new perspective on the study of behaviour patterns and simultaneously providing a reference for transport management departments and related enterprises. Based on Global Positioning System (GPS) trajectory data, we select stopping points as break-taking sites of long-distance freight vehicles and then classify the stopping points into three different classes based on the break-taking duration. We then explore the relationship of the distribution of the break-taking frequency between the three single classifications and their combinations, on the basis of the break-taking duration distribution. We find that the combination is a Gaussian distribution when each of the three individual classes is a Gaussian distribution, contrasting with the power-law distribution of the break-taking duration. Then we experimental analysis the distribution of the break-taking durations and frequencies, and find that, for the durations, the three single classifications can be fitted individually by an Exponential distribution and together by a Power-law distribution, for the frequencies, both the three single classifications and together can be fitted by a Gaussian distribution,so that can validate the above theoretical analysis. Key words: break-taking behaviour, long-distance freight vehicle, statistical analysi

    Convolutional Neural Network Applied to Traversability Analysis of Vehicles

    No full text
    We focus on the need for traversability analysis of vehicles with convolutional neural networks. Most related approaches to traversability analysis of vehicles suffer from the limitations imposed by extracting explicit features, algorithm scalability, and environment adaptivity. In views of this, an approach based on the convolutional neural network (CNN) is presented to traversability analysis of vehicles, which can extract implicit features. Besides, in order to enhance the training speed and accuracy, preprocessing and normalization are adopted before training. The experimental results demonstrate that our method achieves high accuracy and strong robustness

    Effect of Ferulic Acid-Grafted-Chitosan Coating on the Quality of Pork during Refrigerated Storage

    No full text
    Pork is perishable due to oxidation and microbial spoilage. Edible coating based on biopolymers and phenolic compounds is an effective way to preserve the quality of pork. In this study, ferulic acid-grafted-CS (ferulic acid-g-CS) with strong antioxidant and antimicrobial activities was synthesized through a carbodiimide-mediated coupling reaction. The obtained ferulic acid-g-CS was used as an edible coating material for fresh pork. The effect of ferulic acid-g-CS coating on the quality of pork during storage was investigated at 4 °C for 8 days. As compared to the uncoated pork, pork coated with CS and ferulic acid-g-CS showed lower total viable counts, total volatile basic nitrogen values, pH values, thiobarbituric acid reactive substances, and drip losses. Besides, pork coated with CS and ferulic acid-g-CS presented more compact microstructures than the uncoated pork at the eighth day. Sensory evaluation assay showed pork coated with CS and ferulic acid-g-CS had better color, odor, and over acceptance in comparison with the uncoated pork. Ferulic acid-g-CS coating, due to its relatively higher antioxidant and antimicrobial activities compared to CS coating, had a better performance in refrigerated pork preservation. Ferulic acid-g-CS coating effectively extended the shelf life of refrigerated pork to 7 days. This study revealed ferulic acid-g-CS coating was a promising technology for refrigerated pork preservation

    Nonlinear consolidation of arbitrary layered soil with continuous drainage boundary: An approximate closed-form solution

    No full text
    Based on the double nonlinear consolidation constitutive associated with the compression and permeability coefficients, presented by Mesri and Rokhsar (1974), this paper derives an approximate closed-form solution for the one-dimensional nonlinear consolidation of the arbitrary layered soils incorporating the continuous drainage boundary condition. The approximate closed-form solution is obtained by the homogenization of the boundary conditions and eigenfunction method. A model test is conducted to justify the rationality of the approximation and the continuous drainage condition utilized in this study. The calculated results are also compared with those acquired from the simplified analytical solution and the finite difference method. A parametric study is conducted to investigate the influence of various parameters on the consolidation process. The most significant finding is that the influence of Nq appears to be completely different for the cases when Cc/Ck>1 and Cc/Ck1, the increase of Nq shows an adverse influence on the consolidation, whereas the influence becomes positive when Cc/Ck<1. The approximate solution derived herein offers a rigorous analytical approach for the double nonlinear consolidation problems of arbitrary layered soils, providing an effective benchmark for comparison and verification of future sophisticated numerical approaches

    PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C

    No full text
    Summary: Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer

    Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers

    Get PDF
    Transcription factors have traditionally been viewed with skepticism as viable drug targets, but they offer the potential for completely novel mechanisms of action that could more effectively address the stem cell like properties, such as self-renewal and chemo-resistance, that lead to the failure of traditional chemotherapy approaches. Core binding factor is a heterodimeric transcription factor comprised of one of 3 RUNX proteins (RUNX1-3) and a CBFβ binding partner. CBFβ enhances DNA binding of RUNX subunits by relieving auto-inhibition. Both RUNX1 and CBFβ are frequently mutated in human leukemia. More recently, RUNX proteins have been shown to be key players in epithelial cancers, suggesting the targeting of this pathway could have broad utility. In order to test this, we developed small molecules which bind to CBFβ and inhibit its binding to RUNX. Treatment with these inhibitors reduces binding of RUNX1 to target genes, alters the expression of RUNX1 target genes, and impacts cell survival and differentiation. These inhibitors show efficacy against leukemia cells as well as basal-like (triple-negative) breast cancer cells. These inhibitors provide effective tools to probe the utility of targeting RUNX transcription factor function in other cancers
    corecore