28 research outputs found

    The Role of EjSOC1s in Flower Initiation in Eriobotrya japonica

    Get PDF
    The MADS-box transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates environmental and endogenous signals to promote flowering in Arabidopsis. However, the role of SOC1 homologs in regulating flowering time in fruit trees remains unclear. To better understand the molecular mechanism of flowering regulation in loquat (Eriobotrya japonica Lindl.), two SOC1 homologs (EjSOC1-1 and EjSOC1-2) were identified and characterized in this work. Sequence analysis showed that EjSOC1-1 and EjSOC1-2 have conserved MADS-box and K-box domains. EjSOC1-1 and EjSOC1-2 were clearly expressed in vegetative organs, and high expression was detected in flower buds. As observed in paraffin-embedded sections, expression of the downstream flowering genes EjAP1s and EjLFYs started to increase at the end of June, a time when flower bud differentiation occurs. Additionally, high expression of EjSOC1-1 and EjSOC1-2 began 10 days earlier than that of EjAP1s and EjLFYs in shoot apical meristem (SAM). EjSOC1-1 and EjSOC1-2 were inhibited by short-day (SD) conditions and exogenous GA3, and flower bud differentiation did not occur after these treatments. EjSOC1-1 and EjSOC1-2 were found to be localized to the nucleus. Moreover, ectopic overexpression of EjSOC1-1 and EjSOC1-2 in wild-type Arabidopsis promoted early flowering, and overexpression of both was able to rescue the late flowering phenotype of the soc1-2 mutant. In conclusion, the results suggest that cultivated loquat flower bud differentiation in southern China begins in late June to early July and that EjSOC1-1 and EjSOC1-2 participate in the induction of flower initiation. These findings provide new insight into the artificial regulation of flowering time in fruit trees

    Adaptive Intelligent Sliding Mode Control of a Photovoltaic Grid-Connected Inverter

    No full text
    Adaptive intelligent sliding mode control methods are developed for a single-phase photovoltaic (PV) grid-connected transformerless system with a boost chopper and a DC-AC inverter. A maximum power point tracking (MPPT) method is implemented in the boost part in order to extract the maximum power from the PV array. A global fast terminal sliding control (GFTSMC) strategy is developed for an H-bridge inverter to make the tracking error between a grid reference voltage and the output voltage of the inverter converge to zero in a finite time. A fuzzy-neural-network (FNN) is used to estimate the system uncertainties. Intelligent methods, such as an adaptive fuzzy integral sliding controller and a fuzzy approximator, are employed to control the DC-AC inverter and approach the upper bound of the system nonlinearities, achieving reliable grid-connection, small voltage tracking error, and strong robustness to environmental variations. Simulation with a grid-connected PV inverter model is implemented to validate the effectiveness of the proposed methods

    Association of CSF GAP-43 and <i>APOE</i> ε4 with Cognition in Mild Cognitive Impairment and Alzheimer’s Disease

    No full text
    The growth-associated protein 43 (GAP-43) is a presynaptic phosphoprotein in cerebrospinal fluid (CSF). The ε4 allele of apolipoprotein E (APOE) is an important genetic risk factor for Alzheimer’s disease (AD). We aimed to evaluate the association of CSF GAP-43 with cognition and whether this correlation was related to the APOE ε4 status. We recruited participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and they were divided into cognitively normal (CN) ε4 negative (CN ε4−), CN ε4 positive (CN ε4+), mild cognitive impairment (MCI) ε4 negative (MCI ε4−), MCI ε4 positive (MCI ε4+), AD ε4 negative (AD ε4−), and AD ε4 positive (AD ε4+) groups. Spearman’s correlation was utilized to evaluate the relationship between CSF GAP-43 and core AD biomarkers at the baseline. We performed receiver-operating characteristic (ROC) curve analyses to investigate the diagnostic accuracy of CSF GAP-43. The correlations between CSF GAP-43 and the Mini-Mental State Examination (MMSE) scores and brain atrophy at baseline were assessed by using multiple linear regression, while the association between CSF GAP-43 and MMSE scores at the follow-up was tested by performing the generalized estimating equation (GEE). The role of CSF GAP-43 in the conversion from MCI to AD was evaluated using the Cox proportional hazard model. We found that the CSF GAP-43 level was significantly increased in MCI ε4+, AD ε4− and AD ε4+ groups compared with CN ε4− or MCI ε4− group. The negative associations between the CSF GAP-43 and MMSE scores at the baseline and follow-up were found in MCI ε4− and MCI ε4+ groups. In addition, baseline CSF GAP-43 was able to predict the clinical progression from MCI to AD. CSF GAP-43 may be a promising biomarker to screen cognition for AD. The effects of CSF GAP-43 on cognition were suspected to be relevant to APOE ε4 status

    High Temporal Resolution Monitoring of Suspended Matter Changes from GOCI Measurements in Lake Taihu

    No full text
    The Tiaoxi River is the main source of water for Lake Taihu and can result in plumes in the lake after heavy precipitation events. These plumes have played a crucial role in the water quality changes within the lake. High temporal resolution GOCI (Geostationary Ocean Color Imager) data were used to study the spatial distribution of the total suspended matter concentration in Lake Taihu after heavy precipitation events in the Tiaoxi River Basin via an empirical model. The plumes were analyzed after two heavy precipitation events in 2011 and 2013 using 16 GOCI images, which indicated that the Tiaoxi River had a great influence on the spatial distributions of total suspended matter and algal blooms. It was concluded that the main factors affecting the plumes in the Tiaoxi River were precipitation intensity, runoff, and total suspended matter concentration. Human activity, such as sand excavation also played a crucial role in sediment discharge. The results of this study demonstrate that the visualization of GOCI data makes it possible to use remote sensing technology to continuously monitor an inland water environment on an hourly scale, which is of great significance for studying the diffusion and evolution of river plumes

    Characterization of Carotenoid Accumulation and Carotenogenic Gene Expression During Fruit Development in Yellow and White Loquat Fruit

    Get PDF
    Accumulation of carotenoids in peel and pulp of the yellow-fleshed loquat ‘Zaozhong 6’ (ZZ6) and the white-fleshed loquat ‘Baiyu’ (BY) were tracked during different fruit development stages, and the expression of 15 carotenogenic genes were analyzed. During loquat fruit ripening the fresh weight content of β-carotene in peel and pulp of ZZ6 increased gradually and peaked at the fully ripe stage, reaching 68.53 µg⋅g−1 FW in the peel and 11.92 µg⋅g−1 FW in the pulp. In BY, the content of β-carotene in the peel increased and peaked at the fully ripe stage, reaching 38.89 µg⋅g−1 FW, while it decreased in the pulp from the original 0.47 µg⋅g−1 FW and reduced to 0.29 µg⋅g−1 FW. The content of β-cryptoxanthin in the peel and pulp of ZZ6 and BY both increased steadily, and peaked at the fully ripe stage; however, the content of lutein decreased in the peel of ZZ6 and increased in the pulp, but in BY, it dropped and then rose in the peel. There was no significant change of β-cryptoxanthin in the pulp of BY. After the breaker stage, the mRNA levels of phytoene synthase (PSY) and chromoplast-specific lycopene β-cyclase (CYCB) were higher in the peel, while CYCB and β-carotene hydroxylase (BCH) mRNAs were higher in the flesh of ZZ6, compared with BY. The results showed that the expression level of PSY, CYCB, and BCH appeared to cooperatively regulate the accumulation of carotenoids

    Transport pathways and kinetics of cerebrospinal fluid tracers in mouse brain observed by dynamic contrast-enhanced MRI

    No full text
    Abstract Recent studies have suggested the glymphatic system as a key mechanism of waste removal in the brain. Dynamic contrast-enhanced MRI (DCE-MRI) using intracisternally administered contrast agents is a promising tool for assessing glymphatic function in the whole brain. In this study, we evaluated the transport kinetics and distribution of three MRI contrast agents with vastly different molecular sizes in mice. Our results demonstrate that oxygen-17 enriched water (H2 17O), which has direct access to parenchymal tissues via aquaporin-4 water channels, exhibited significantly faster and more extensive transport compared to the two gadolinium-based contrast agents (Gd-DTPA and GadoSpin). Time-lagged correlation and clustering analyses also revealed different transport pathways for Gd-DTPA and H2 17O. Furthermore, there were significant differences in transport kinetics of the three contrast agents to the lateral ventricles, reflecting the differences in forces that drive solute transport in the brain. These findings suggest the size-dependent transport pathways and kinetics of intracisternally administered contrast agents and the potential of DCE-MRI for assessing multiple aspects of solute transport in the glymphatic system

    Photosynthetic Responses of <i>Racomitrium japonicum</i> L. to Strontium Stress Evaluated through Chlorophyll a Fluorescence OJIP Transient Analysis

    No full text
    Nuclides pollution and its biological effects are of great concern, especially for bryophytes during their terrestrial adaptation. Understanding PSII activity and electron transport response is vital for comprehending moss abiotic stress reactions. However, little is known about the photosynthetic performance of moss under nuclide treatment. Therefore, this study aimed to evaluate the chlorophyll fluorescence of Racomitrium japonicum L. The moss was subjected to Sr2+ solutions at concentrations of 5, 50, and 500 mg/L to evaluate chlorophyll a fluorescence using the OJIP test. Moderate and high Sr2+ stress led to inner cell membrane dissolution and reduced chlorophyll content, indicating impaired light energy absorption. At 5 mg/L Sr2+, fluorescence kinetics showed increased light energy capture, energy dissipation, and total photosynthetic driving force, thus stimulating transient photosynthetic activity of PSII and improving PSI reduction. Linear electron transfer and PSII stability significantly decreased under moderate and high Sr2+ stress, indicating potential photosynthetic center damage. Cyclic electron transfer (CEF) alleviated photosynthetic stress at 5 mg/L Sr2+. Thus, low Sr2+ levels stimulated CEF, adjusting energy flux and partitioning to protect the photosynthetic apparatus. Nevertheless, significant damage occurred due to inefficient protection under high Sr2+ stress
    corecore