8 research outputs found

    Detection method of combustion oscillation characteristics under strong noise background

    No full text
    After the lean fuel premixed combustion technology is applied to aero engines, severe combustion oscillations will be cased and led to hidden safety hazards such as engine vibration, further energy waste and other problems. Therefore, it is increasingly important to actively control combustion oscillations. In this paper, a multispectral radiation thermometry (MRT) is used to analyze the hydroxyl group, which is a measurable research object in the combustion chamber of an aero engine, and to fit the functional relationship between the radiation intensity ratio and the temperature in different bands. The theoretical value of the error is <2%. At the same time, in order to solve the problem of weak detection signal and excessive interference signal, an improved frequency domain filtering method based on fast Fourier transform is designed. Besides, the FPGA platform is used to ensure the real-time performance of the temperature measurement system, and simulations and experiments are performed. An oscillating signal with an oscillation frequency of 315 Hz is obtained on the established test platform, and the error is only 1.42%

    Implementation of Er-doped random fiber laser self-mixing sensor with ultra-limit sensitivity

    No full text
    This study first demonstrates that the random distributed feedback fiber laser (RDFL) can be implemented for sensing detection by using the self-mixing effect as a sensing mechanism. By constructing a compact self-mixing velocimeter based on Er-doped RDFL with the integration of a laser, sensing element, and transmission platform, we successfully measured the minimum detectable feedback intensity of 38.65 fW for the velocity signal, corresponding to 0.55 photons per Doppler cycle, exhibiting ultra-high sensitivity dynamics characteristics. In addition, the velocity measurement of a non-cooperative target at a single-channel distance of 100 km is accomplished because of the natural feature of long-distance transmission for the random distributed feedback fiber lasers, which greatly improves the ultra-long detection range in the field of self-mixing sensing. The proposed sensing scheme not only unveils a fresh perspective on the exploration of random fiber laser sensing but also showcases its diverse and wide-ranging applications within the realm of remote sensing measurements

    Ultraviolet to Long-Wave Infrared Photodetectors Based on a Three-Dimensional Dirac Semimetal/Organic Thin Film Heterojunction

    No full text
    In this work, high-performance ultraviolet to long-wave infrared (UV-LIR) devices based on an N-type three-dimensional (3D) Dirac semimetal Cd3As2 and P-type organic (small molecules and polymers) heterojunction are prepared. Primarily, the photodetector shows a broadband photoresponse from 365 to 10600 nm. The optimized device responsivity is 729 mA/W, along with a fast response time of 282 its and a high on-off ratio of 6268, which are 2 orders of magnitude higher than those previously reported for a 3D Dirac semimetal-based device. In the LIR region (10600 nm), the responsivity and on-off ratio can reach 81.3 mA/W and 100, respectively. In addition, the time-resolved femtosecond pump detection technology is used to reveal the relaxation time of Cd3As2/organic thin films (4.30 ps), indicating that Cd3As2/organic thin films have great potential for the manufacture of fast IR devices. These results demonstrate that the 3D Dirac semimetal/organic thin film heterojunction photo detectors will be a feasible solution for high-speed and broadband photodetectors in large-array imaging

    Ultrafast photocarrier dynamics in a 3D Dirac semimetal Cd3As2 film studied with terahertz spectroscopy

    No full text
    By employing optical pump Terahertz (THz) probe spectroscopy, a three dimensional (3D) Dirac semimetal, Cd3As2 film, was investigated systematically at room temperature. After photoexcitation at 400/800 nm, the rise time of photoenhanced THz photoconductivity (PC) is about ∼1.0 ps, increasing slightly with the pump fluence, in which time scale, photoexcited electrons and holes establish separate Fermi distribution with electrons in the conduction band and holes in the valence band via fast carrier-carrier scattering and carrier-phonon coupling. The subsequent THz PC relaxation shows single exponential decay with a time constant of ∼6.0 ps that is independent of pump fluence. The relaxation process is dominated by the electron-hole recombination via a radiative and nonradiative way, which is mediated by the phonon-phonon scattering. The optically induced THz complex PC can be well fitted with the Drude-Smith model. Our experimental results shed light on understanding the photocarrier dynamics of the 3D Dirac semimetal materials at THz frequency

    The Seventh Visual Object Tracking VOT2019 Challenge Results

    No full text
    The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).Funding Agencies|Slovenian research agencySlovenian Research Agency - Slovenia [J2-8175, P2-0214, P2-0094]; Czech Science Foundation Project GACR [P103/12/G084]; MURI project - MoD/DstlMURI; EPSRCEngineering &amp; Physical Sciences Research Council (EPSRC) [EP/N019415/1]; WASP; VR (ELLIIT, LAST, and NCNN); SSF (SymbiCloud); AIT Strategic Research Programme; Faculty of Computer Science, University of Ljubljana, Slovenia</p
    corecore