386 research outputs found

    Multi-modal Image Reconstruction of Electrical Impedance Tomography Using Kernel Method

    Get PDF

    Image Reconstruction of Electrical Impedance Tomography Based on Optical Image-Guided Group Sparsity

    Get PDF

    Impedance-optical Dual-modal Cell Culture Imaging with Learning-based Information Fusion

    Get PDF
    While Electrical Impedance Tomography (EIT) has found many biomedicine applications, a better resolution is needed to provide quantitative analysis for tissue engineering and regenerative medicine. This paper proposes an impedance-optical dual-modal imaging framework, which is mainly aimed at high-quality 3D cell culture imaging and can be extended to other tissue engineering applications. The framework comprises three components, i.e., an impedance-optical dual-modal sensor, the guidance image processing algorithm, and a deep learning model named multi-scale feature cross fusion network (MSFCF-Net) for information fusion. The MSFCF-Net has two inputs, i.e., the EIT measurement and a binary mask image generated by the guidance image processing algorithm, whose input is an RGB microscopic image. The network then effectively fuses the information from the two different imaging modalities and generates the final conductivity image. We assess the performance of the proposed dual-modal framework by numerical simulation and MCF-7 cell imaging experiments. The results show that the proposed method could significantly improve image quality, indicating that impedance-optical joint imaging has the potential to reveal the structural and functional information of tissue-level targets simultaneously

    Spatial Transform Decoupling for Oriented Object Detection

    Full text link
    Vision Transformers (ViTs) have achieved remarkable success in computer vision tasks. However, their potential in rotation-sensitive scenarios has not been fully explored, and this limitation may be inherently attributed to the lack of spatial invariance in the data-forwarding process. In this study, we present a novel approach, termed Spatial Transform Decoupling (STD), providing a simple-yet-effective solution for oriented object detection with ViTs. Built upon stacked ViT blocks, STD utilizes separate network branches to predict the position, size, and angle of bounding boxes, effectively harnessing the spatial transform potential of ViTs in a divide-and-conquer fashion. Moreover, by aggregating cascaded activation masks (CAMs) computed upon the regressed parameters, STD gradually enhances features within regions of interest (RoIs), which complements the self-attention mechanism. Without bells and whistles, STD achieves state-of-the-art performance on the benchmark datasets including DOTA-v1.0 (82.24% mAP) and HRSC2016 (98.55% mAP), which demonstrates the effectiveness of the proposed method. Source code is available at https://github.com/yuhongtian17/Spatial-Transform-Decoupling

    Diammonium bis­[(2-amino­acetato-κ2 N,O)(2,2′-bipyridine-κ2 N,N′)(N,N-dimethyl­formamide-κO)copper(II)] hexa­cosa­oxidoocta­molybdate(VI)

    Get PDF
    The title compound, (NH4)2[Cu(C2H4NO2)(C10H8N2)(C3H7NO)]2[Mo8O26], contains a centrosymmetric β-type octa­molybdate anion, two copper(II) complex cations and two ammonium ions. The CuII atom is coordinated in a square-pyramidal geometry by a 2,2′-bipyridine and a 2-amino­acetate ligands in the basal plane and by an O atom of N,N-dimethyl­formamide in the apical position. The anions and cations are linked by N—H⋯O hydrogen bonds into a three-dimensional network

    Knockdown of LncRNA SBF2-AS1 Inhibited Gastric Cancer Tumorigenesis via the Wnt/LRP5 Signaling Pathway

    Get PDF
    This investigation aimed to uncover the impact of a long noncoding RNA, SET-binding factor 2 antisense RNA1 (SBF2-AS1) on the malignant progression of gastric cancer (GC) and to further explore its underlying mechanism. SBF2-AS1 expression was quantified by qRT-PCR in GC cell lines and GC tissues. In vitro loss-of-function studies of SBF2-AS1, accompanied by flow cytometry, CCK-8, and cell invasion tests, were applied to elucidate the impact of SBF2-AS1 on the tumor progression of GC cells. Finally, Western blotting and a luciferase assay were used to detect WNT/LRP5 signaling pathway activation. SBF2-AS1 was aberrantly expressed in GC cell lines (p<0.05) and GC tissues (p<0.05). Cell invasive and proliferative capabilities were inhibited via SBF2-AS1 knockdown, resulting in apoptosis of NCI-N87 and MKN74 cells. Additionally, online database analysis uncovered a positive correlation between SBF2-AS1 and the Wnt/LRP5 signaling pathway (p<0.05). SBF2-AS1 knockdown blocked the Wnt/LRP5 signaling pathway, whereas the effects of SBF2-AS1 knockdown on the malignant genotype of MKN74 as well as NCI-N87 cells were partially restored by triggering the Wnt/ LRP5 signaling pathway. High expression of SBF2-AS1 was found in GC, the malignant progression of which was repressed via SBF2-AS1 knockdown by inhibiting the Wnt/LRP5 signaling pathway
    corecore