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Image Reconstruction in Electrical Impedance
Tomography Based on Structure-Aware

Sparse Bayesian Learning
Shengheng Liu, Member, IEEE, Jiabin Jia, Member, IEEE, Yimin D. Zhang, Senior Member, IEEE,

and Yunjie Yang, Member, IEEE

Abstract—Electrical impedance tomography (EIT) is devel-
oped to investigate the internal conductivity changes of an
object through a series of boundary electrodes, and has become
increasingly attractive in a broad spectrum of applications.
However, the design of optimal tomography image reconstruction
algorithms has not achieved the adequate level of progress and
matureness. In this paper, we propose an efficient and high-
resolution EIT image reconstruction method in the framework of
sparse Bayesian learning. Significant performance improvement
is achieved by imposing structure-aware priors on the learning
process to incorporate the prior knowledge that practical con-
ductivity distribution maps exhibit clustered sparsity and intra-
cluster continuity. The proposed method not only achieves high-
resolution estimation and preserves the shape information even
in low signal-to-noise ratio scenarios, but also avoids the time-
consuming parameter tuning process. The effectiveness of the
proposed algorithm is validated through comparisons with state-
of-the-art techniques using extensive numerical simulation and
phantom experiment results.

Index Terms—Inverse problem, electrical impedance tomogra-
phy (EIT), sparse Bayesian learning (SBL), image reconstruction,
maximum a posteriori (MAP) estimation.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is a promis-
ing non-invasive imaging modality for continuous real-

time visualization of the dynamic electric conductivity dis-
tribution of the interior of a body. To perform EIT, we
apply weak low-frequency alternating currents (the typical
frequency range is 1–100 kHz and the magnitude is 1–
5 mA) in multiple manners and measure the corresponding
peripheral voltages through an array of electrodes attached
on the surface of an object. Then, the cross-sectional image
of the internal spatial conductivity distribution is recovered
from the resulting boundary voltage measurements. Despite
its relatively low spatial resolution (∼ 10% of the sensor
diameter) that hinders its general applicability, EIT has become

The work of S.-H. Liu, J. Jia, and Y. Yang was supported in part by the UK
EPSRC under Grant No. EP/P006833/1. Part of this work was presented at
the 2017 IEEE International Conference on Imaging Systems and Techniques
(IST 2017), Beijing, China [1].

S.-H. Liu, J. Jia, and Y. Yang are with the Agile Tomography Group,
Institute for Digital Communications, School of Engineering, The University
of Edinburgh, Edinburgh EH9 3JL, UK (e-mail: jiabin.jia@ed.ac.uk).

Y. D. Zhang is with the Department of Electrical and Computer Engineer-
ing, College of Engineering, Temple University, Philadelphia, PA 19122 USA.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

a well-accepted tomographic imaging technique because of
its desirable properties of portability, low cost, no known
hazards, and high temporal resolution in comparison with other
techniques available for probing internal dynamics. As a result,
EIT finds broad applications in a number of fields, such as
industrial process monitoring [2]–[4], geophysical exploration
[5]–[7], and biomedical diagnosis [8]–[10].

Mathematically, the reconstruction of conductivity maps in
EIT amounts to solving a nonlinear ill-posed inverse problem
from noisy data. Regularization techniques can be employed
to mitigate the instability of the solutions. One of the most
widely used families is the one-step Gauss–Newton (GN)
reconstruction approach [11], which allows the use of sophis-
ticated regularized models to describe the EIT inverse problem
through a heuristically determined prior [12], [13]. Landweber
iteration is a variation of the steepest gradient descent method
and is also widely used in EIT [14], [15]. The algebraic
reconstruction technique (ART) is a simple and effective image
reconstruction method for computerized tomography that can
be applied to EIT [16], [17]. Other important methods include
regularization via the total variation (TV) functional [18], [19],
which allows image reconstruction with edge preservation.

As EIT solutions generally manifest themselves as sparse
vectors, a number of sparse regularization approaches have
been proposed to stabilize the inversion. For example, in [20]–
[22], an `1 penalty was incorporated into the regularization to
promote sparsity. It is shown in [23] that, by clustering rele-
vant signal components together and taking the dependencies
between them into account, a superior performance is achieved
through the exploitation of structure-based approaches in var-
ious practical scenarios. On this basis, sparse signal recovery
algorithms have been developed in the literature to exploit
the cluster structure of the signals. These methods generally
require certain knowledge about the signals, such as the size
and distribution of the partition, and the number of nonzero
entries of the signal to be recovered. In many applications,
however, such knowledge is unavailable. In [24], an adaptive
group sparsity (AGS) constraint is proposed to obtain en-
hanced image quality, where the required a priori knowledge
is first obtained through a coarse image reconstruction, and
images with a finer quality are then obtained.

A natural mechanism to incorporate the structure knowl-
edge in solving the inverse problem is to employ Bayesian
approaches [25], [26], which are aimed to characterize the pos-
terior distribution, e.g., computing posterior moments or other
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posterior expectations. Sampling via Markov chain Monte
Carlo (MCMC) [27] techniques is among the most commonly
used paradigms for Bayesian inversion. Although various
efforts have been made to accelerate the MCMC approach by
exploiting, for example, the gradient and Hessian information
of the posterior density [28], or multilevel sampling strategies
[29], generating sufficient MCMC samples is still computa-
tionally costly [26]. Alternatively, we can use the filtering
and variational methods, which provide approximations of the
exact posterior by finding the best representative from a class
of simpler distributions. Readers are referred to [26] and the
references therein for an overview.

The past few years have witnessed extensive research and a
significant progress on Bayesian inversion in terms, e.g., of the
design of correlation priors and the use of hierarchical models.
To name a few, in [30], a Bayesian hierarchical model with
conditionally Gaussian priors was used to resolve piecewise
smooth structures in noisy and blurred images. In [31], a uni-
fied and efficient Bayesian method based on Krylov subspace
iterative techniques and preconditioners was further derived
to compute the approximated maximum a posteriori (MAP)
estimate of the image and the prior variance. The algorithm
proposed in [31] was later successfully applied to cerebral
source localization [32], where the variances are assumed
to be guided by a hyperprior with the form of generalized
Gamma family, so as to favor small values while permitting
rare large outliers which correspond to high source amplitudes.
Besov space priors [33] defined by a wavelet expansion
with random coefficients have attracted broad attention in the
medical imaging community due to their merits such as edge-
preserving, sparsity-promoting, and discretization invariant,
with imaging results similar to TV regularization [33]–[35].
In [36], the smoothness of unknown targets is modelled by
Whittle-Matérn fields, which are essentially stationary Gaus-
sian random fields specified by a correlation function to control
the anisotropic properties of the prior distribution. A finite-
dimensional approximation of the Whittle-Matérn priors is
derived from sparse inverse covariance matrices by using a
stochastic partial differential equation. The problem consid-
ered in [37] is to reconstruct the conductivity consisting of
well-defined inclusion-type targets in an approximately homo-
geneous background. The proposed iterative algorithm is based
on the use of a nonlinear edge-preferring prior density and
the minimization of the corresponding Tikhonov functional
by efficiently solving an approximate sequence of linearized
problems with the help of prior-conditioning and least squares
with QR factorization (LSQR). In [38], the inverse problem
of magnetoencephalography (MEG), which is very similar
to EIT, is solved by postulating a hierarchical conditionally
Gaussian prior model, where an anatomical prior is introduced
to reflect the direction preference of each dipole based on
the a priori magnetic resonance imaging (MRI) information.
The hyperparameter vector consists of prior variances of
the dipole moments, which are assumed to follow a non-
conjugate gamma distribution with variable scaling and shape
parameters. By combining the iterative alternating sequential
algorithm with Krylov subspace iterative solver, satisfactory
sparsity control and convergence rate are both achieved.

The recently proposed sparse Bayesian learning (SBL)
framework [39]–[44], which is closely related to the term
automatic relevant determination (ARD) in the context of
neural network, can adaptively and flexibly explore and exploit
signal structures such as clustering or continuity without any
a priori information. In addition, SBL is more advantageous
than other families of aforementioned algorithms in the sense
that it is more robust in noisy environments, and offers better
performance when the columns of the dictionary matrix are
highly correlated and/or the image to be reconstructed is not
highly sparse [39]. In this paper, therefore, we introduce the
concept of structure-aware sparse Bayesian learning (SA-SBL)
to perform EIT imaging, and both the clustered sparsity and
intra-cluster correlation are utilized in the image reconstruction
to achieve improved reconstruction accuracy. Compared with
the state-of-the-art methods, the proposed approach is advan-
tageous because its structure-aware modeling capability pro-
motes clustered sparsity and eliminates irrelevant components.
In addition, the proposed method yields a better approximation
to the `0-norm sparsity measure and, as a result, achieves
enhanced EIT imaging with a higher spatial resolution and
improved robustness against Gaussian noise.

The paper is organized as follows. The forward and inverse
models are briefly described in Section II. In Section III, we
first propose the SA-SBL algorithm for EIT image recon-
struction. In Section IV, numerical and real data experiments
are designed to simulate the challenging medical application
scenarios, and the performance of the proposed algorithms is
compared with other state-of-the-art approaches. The paper is
concluded in Section V.

Notations: Lower-case (/upper-case) bold characters are
used to denote vectors (/matrices). (̄·) and |·| respectively
return the average of a given vector and the modulus of a given
complex number. ∇ is the Nabla symbol. diag{A} returns a
column vector consisting of the main diagonal entries, whereas
and diag{A, 1} returns one corresponding to the first-diagonal
entries above the main diagonal. IN denotes an N×N identity
matrix. tr(·) and (·)T respectively represent the trace and
transpose operation of a matrix. ‖·‖p represents the `p-norm of
a vector. E(·) returns the expected value of a discrete random
variable. p(·) denotes the probability density function. N (·)
denotes Gaussian distribution. R is the set of real numbers.

II. SIGNAL MODEL

A. Forward Model
In EIT, the computation of the voltage measurements from

the known currents and conductivity distribution is referred to
as the forward problem. The EIT forward model is mathemat-
ically established from a low-frequency approximation of a
subset of the Maxwell’s electromagnetic equations with some
mixed Dirichlet/Neumann boundary conditions [45]. Consider
a bounded domain Ω with piecewise smooth boundary ∂Ω.
Let σ denote the real-valued conductivity distribution in Ω.
Assume that the boundary electrodes are perfectly conductive.
Then, applying a current flux through these electrodes results
in the scalar interior electric potential u characterized as the
solution to

∇ · (σ∇u) = 0 in Ω, (1)
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where we assume that the static excitation condition is satisfied
and no current sources/sinks exist within Ω. The complete
electrode model (CEM) is the most accurate model for EIT
since it accounts for the effects of the electrodes and the
contact impedances between the electrolyte and the electrodes
[47]. Assume that a total of L electrodes are attached to the
boundary ∂Ω, whose locations are denoted as ∂Ωl ⊂ ∂Ω, l =
1, 2, . . . , L. Denote their contact impedances as zl. Then, the
boundary conditions of the CEM is expressed as [45],

u+ zlσ∇u · ~e = vl on ∂Ωl, (2)∫
El
σ∇u · ~e = Il on ∂Ωl, (3)

σ∇u · ~e = 0 on ∂Ω

/⋃L

l=1
∂Ωl, (4)

where ~e is the outer normal vector on ∂Ω, and Il denotes the
injected current at the l-th electrode.

B. Inverse Model

The inverse problem in EIT is to determine the conductivity
in the interior of a object based on the simultaneous measure-
ments of alternating currents and voltages at the boundary.
In this paper, linearized difference imaging is considered. By
solving the Laplacian elliptic partial differential equation given
in (1), we can readily relate the map of internal conductivity
perturbation δσ ∈ RN×1 within the region of interest to
its corresponding boundary voltage variation δv ∈ RM×1

(M � N ) using the following linear approximation [46]

δv ≈ Jδσ + n, (5)

where n is the measurement noise vector. In this paper, we
assume that the noise vector is additive and follows the zero-
mean Gaussian distribution with n ∼ N (0, γ0I). Note that,
in practice, EIT systems are susceptible to other types of
noise and modeling errors. Sources of such noise and errors
include multiplicative noise and bias due to amplifier gain
distortions and offsets, inter-channel measurement noise due to
cross-talk between measurement channels, linearization errors
when reference conductive distribution does not match the
reference voltages used to compute the Jacobian, and errors in
electrode position, domain shape/size and FEM discretization
level. However, given the space limitation, it is difficult to
examine different types of noise and errors in this work.
As a result, we follow the common practice in EIT image
reconstruction and assume the additive noise model in (5) with
Gaussian distributed entries (see, e.g., [11], [13]–[21]). Still,
the above-mentioned annoying noise and errors may co-exist
in the real-data experiments in Section IV-B. As shown later,
the proposed method performs better in such cases.

The sensitivity map J ∈ RM×N , also frequently referred
to as the Jacobian matrix, is determined by mesh, electrode
positions, and current injection/measurement protocol. By in-
tegrating over the k-th (k = 1, 2, . . . , N ) simplex Ωk from the
scalar product of the gradients of the potential fields u that
are induced by driving current pattern Id and measurement

pattern Im with the finite element method (FEM), J can be
readily computed as [46]

J {d,m; k} =
∂vd,m

∂σk
= −

∫
Ωk

∇u(Id) · ∇u(Im)dΩ, (6)

where d 6= m ∈ {1, 2, . . . ,M} represents the sample index of
selected electrode pairs in the m-th measurement under the d-
th current pattern. For notational convenience, in the following
discussion, we simplify the notations δσ and δv as σ and v,
respectively. In this case, (5) is simplified as

v = Jσ + n. (7)

This is a typical example of inverse problems, where the task
is to reconstruct a signal from observations that are subject to
the forward model. Like many other inverse problems, EIT
image reconstruction is severely ill-posed and thus is difficult
to obtain stable and reliable solutions. Therefore, it is often
formulated as the following regularized optimization problem

σ̂ = min
σ∈RN×1

d (v,Jσ) + λR(σ), (8)

where d (v,Jσ) is the data fidelity term that enforces σ to
satisfy the observations v, and R(σ) is a stable operator, or a
regularization term which restricts the solution to comply with
a predefined model over σ. The minimization in (8) represents
a tradeoff between fitting the data exactly and stabilizing
the solution of σ, which is controlled by the regularization
parameter λ. The major problem in this framework is that it
is difficult to determine a proper R(σ) such that it represents
a most appropriate model for EIT image reconstruction and,
at the same time, its optimization procedure can be easily
implemented.

In this work, equation (8) is interpreted in a Bayes perspec-
tive such that finding the solution amounts to performing the
MAP estimation. In this case, d (v,Jσ) takes the form of a
log-likelihood whereas R(σ) takes the form of a parametric
log-prior log p(σ; Θ) over variable σ. As such, the minimiza-
tion in (8) becomes [26], [27]

σ̂ = min
σ∈RN×1

log p(v |σ ) + λ log p(σ; Θ). (9)

This allows for more adequately modeling the a priori knowl-
edge about the objective. Compared to the conventional regu-
larization approach based on functional analysis, the Bayesian
probabilistic approach provides a more attractive and rational
framework for the parameter recovery, as it allows for the
quantification of the uncertainty in the recovery, while natu-
rally accommodating different types of data and rich models
of a priori information.

III. IMAGE RECONSTRUCTION BASED ON SA-SBL

In medical imaging applications, generally, the underlying
conductivity distribution change σ can be viewed as a con-
catenation of several clusters due to its inherent clustering
structure. In practice, however, the actual clustering partition
pattern is more likely to be unknown. In this context, we
consider a general case in which all the clusters overlap
each other with an equal size h and the nonzero entries are
arbitrarily distributed. It was proved in [39] that, since real
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clustering partition can be learned during the SBL process by
revoking and merging the preset clusters, the reconstruction
performance is guaranteed to approach the result obtained
from the known clustering partition counterparts. To facilitate
the utilization of SA-SBL framework, we factorize σ as

σ , Ψx , [Ψ1, . . . ,Ψg]
[
xT

1 , . . . ,x
T
g

]T
, (10)

where g = N − h + 1 is the total number of
clusters. In addition, for ∀i = 1, 2, . . . , g, xi =
[xi, . . . , xi+h−1]

T ∈ Rh×1 denotes the i-th preset cluster,

and Ψi ,
[
0T

(i−1)×h, I
T
h×h,0

T
(N−i−h+1)×h

]T
∈ RN×h. The

underlying linear model in (7) can then be rewritten as

v = JΨx + n , Φx + n, (11)

where Φ , [Φ1, . . . ,Φg], and Φi , JΨi ∈ RM×h. We
assume that the prior of the weights x follows a zero-mean
Gaussian distribution with

p (x; {γi,Bi}gi=1) = N (0,Σ0) , (12)

where the stretched covariance matrix is expressed as

Σ0 =

 γ1B1 0
. . .

0 γgBg

 ∈ Rgh×gh. (13)

The structured sparsity in x is determined by γi, i =
1, . . . , g, in Σ0. If γi = 0, the values of the entries in the
associated i-th cluster of x becomes zero. By considering the
fact that n ∼ N (0, γ0I), the a posteriori belief for the weights
x is subject to the following Gaussian distribution

p (x |v; Θ) = N (µx,Σx) , (14)

where Θ , {γ0, {γi,Bi}gi=1} denotes the hyperparameters
with mean vector

µx = Σ0Φ
T
(
γ0I + ΦΣ0Φ

T
)−1

v ∈ Rgh×1, (15)

and covariance matrix

Σx =

(
Σ−1

0 +
1

γ0
ΦTΦ

)−1

∈ Rgh×gh

= Σ0 −Σ0Φ
TΣv

−1ΦΣ0,

(16)

with Σv , γ0I + ΦΣ0Φ
T.

The MAP probability estimate of x is obtained from the
posterior mean µx, prior to which, the hyperparameters Θ
must be estimated first. The expectation-maximization (EM)
method is employed to maximize p (v; Θ), which is equivalent
to minimizing − log p (v; Θ). Thus we obtain the following
cost function

L (Θ) , −2 log

∫
p(v |x; γ0 )p (x; {γi,Bi}gi=1) dx

= log |Σv|+ vTΣv
−1v.

(17)

The correlation structure matrix Bi can be updated using
the gradient of the cost function with respect to Bi. To avoid

the overfitting problem, we introduce B̃i as an intermediate
variable to compute Bi, which is updated as,

B̃new
i = B̃i +

1

γi

(
Σi

x + µi
x

(
µi

x

)T)
, (18)

where µi
x = µx ((i− 1)h+ 1 : ih), Σi

x =
Σx ((i− 1)h+ 1 : ih, (i− 1)h+ 1 : ih). The estimation
of Bi is then obtained by constraining it to the following
Toeplitz form,

Bi = Toeplitz
([
r0
i , r

1
i , . . . , r

h−1
i

])

=


r0
i r1

i · · · rh−1
i

...
. . . . . .

...
rh−2
i · · · r0

i r1
i

rh−1
i rh−2

i · · · r0
i

 ,
(19)

where
ri = sign(r̃i) ·min {|r̃i| , 0.99} , (20)

r̃i =
diag(B̃i, 1)

diag(B̃i)
. (21)

Note that the averaging of ri in the above computation
effectively prevents against overfitting.

ii- i+

ii- i+ N

N

Fig. 1. Illustration of the structure in the conductivity distribution σ.

An computationally efficient learning rule for the hyperpa-
rameter γi can be derived by minimizing the cost function via
the majorization-minimization approach [39], [48], which can
be expressed as

γnew
i = (γi +βγi+ +βγi−) ·

∥∥∥√Bi(Φi)
T
Σv
−1v

∥∥∥
2√

tr
(

(Φi)
T
Σv
−1ΦiBi

) , (22)

where β ∈ [0, 1] models the pattern coupling between the
hyperparameter γi of cluster Bi and the hyperparameters
{γi+, γi−} of its neighboring clusters, and subscripts i+ and
i− respectively indicate the neighboring clusters of the i-th
cluster with larger and smaller indices. The mapping from
vector σ to the actual geometry and the neighboring clusters
are illustrated in Fig. 1. By introducing parameter β into the
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learning process, the relevance of the neighboring clusters,
which are not adjacent to the underlying cluster within vector
σ, is also exploited. Note that, while the update formulae
provide good numerical behavior in all the experiments, there
is no theoretical analysis on the stability of updating rules of
Bi and γi. Nevertheless, as EIT has the merit of high time
resolution, we can discard the abnormal frames.

By treating x as a latent parameter, and setting the derivative
of the cost function over γ0 to 0, the learning rule for γ0 is
derived as

γ0 =
1

M

(
‖v −Φµx‖

2
2 +

∑g

i=1
tr
(
Σi

x(Φi)
T
Φi

))
. (23)

A pseudo-code implementation of the proposed algorithm
for EIT image reconstruction is provided in Algorithm 1. To
update the parameters through the EM approach, the com-
putational complexity of the proposed method is O(M2gh)
for each iteration. It is worth emphasizing that, the time-
consuming parameter tuning process is averted in the proposed
algorithm. The concept of pattern coupling was studied in [40],
where the recovery performance is shown to be insensitive to
the choice of β as long as β > 0. It was also proved that
taking different values of h will lead to negligible difference
[39]. For simplicity, we set β = 0.25 and h = 4 throughout
this paper. The other two input parameters εmin and ϑmax are
related to the algorithm precision and are selected according
to the required performance and affordable computational
complexity. As such, none of them requires a time-consuming
parameter tuning process.

Algorithm 1: EIT image reconstruction based on SA-
SBL algorithm.
Input : v, J, h, β, εmin, ϑmax

Initialize : Set ε = 1, ϑ = 0, µx = 0gh×1,
Σx = 0gh×gh, γi = 1g×1,

γ0 = 0.01×

√
1

N−1

N∑
i=1

|vi − v̄|2,

Bi = Toeplitz([0.90, . . . , 0.9h−1]).
Iterations:

1 while ε > εmin and ϑ ≤ ϑmax do
2 Update µx using (15);
3 Update Σx using (16);
4 Update γi using (22);
5 Update γ0 using (23);
6 Update Bi using (18)–(21);
7 ε = ‖µnew

x − µx‖2/ ‖µnew
x ‖2;

8 ϑ = ϑ+ 1.
9 end

Output : σ̂ = Ψµ̂x

Remarks: The proposed hierarchical Bayesian model allows
the estimation of prior parameters in an unsupervised manner,
i.e., the proposed algorithm does not require any information
regarding either the sparsity or the clustering prior. Rather,
improved performance is achieved by adaptively and flexibly
exploring and exploiting such signal structures.

IV. RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the pro-
posed SA-SBL based method through extensive numerical
simulations and phantom experiments. To demonstrate the
superiority of the proposed method, comparisons with existing
state-of-the-art approaches, such as ART [16], TV regulariza-
tion [18], `1 regularization [21], Nissinen’s Bayesian method
[49], and AGS constraint method [24], are provided. Note
that since modeling errors are not considered in this work,
the term “Nissinen’s Bayesian method” here refers to the
conventional MAP estimate without the approximation error
method (c.f., Section 2.1 in [49] or Section 2.2.3 in [50]).
Note that in terms of the spatial resolution of the reconstructed
images, existing Bayesian inversion based methods do not
show significant improvement when compared to traditional
deterministic approaches. For instance, the reconstructed re-
sults using Bayesian inversion with Whittle-Matérn priors are
comparable to the solution of the gradient-based smoothness
methods [36]. It was also pointed out in [31] that, the TV and
Perona-Malik regularization schemes can both be seen as MAP
estimations of Bayesian hierarchical models proposed therein.
As discussed in [50] and will be presented later, Nissinen’s
Bayesian method demonstrates similar performance with the
Tikhonov regularization.

A. Synthetic Data Experiments

We present several synthetic data experiments in this sub-
section to demonstrate the effectiveness of the proposed al-
gorithm in comparison with other state-of-the-art approaches.
In the COMSOL Multiphysics R© environment, we design a
16-electrode EIT sensor as shown in Fig. 2(a). The diameter
of the sensor is set as 95 mm. As the neighboring bipolar
pattern is adopted, the degrees of freedom of the measurement
is M = 16× (16−3)/2 = 104 (dimension of the voltage data
vector).

(a) (b)

Fig. 2. Synthetic data experimental settings. (a) Schematic illustration of the
designed EIT sensor system in the COMSOL environment. (b) Normalized
sensitivity map of the EIT sensor configuration.

Based on the sensor configuration, the sensitivity map J
can be computed. The scaled summation of each row of J
is plotted in Fig. 2(b). The sensitivity map is essentially the
superposition of all the sensitivity distributions corresponding
to each measurement, which is nonuniform as shown in Fig.
2(b). The matrix J has the highest sensitivity in the pixels
near the measurement surface, and becomes less sensitive in
the center area. In the linearized algorithm, the sensitivity
map directly affects the quality of the reconstructed image,
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as the objects near the excitations will be greatly augmented.
This will be demonstrated in the following experiments. The
mutual coherence [51], Ξ(J), of the matrix J is defined as the
maximum absolute value of the inner product between any
two normalized columns ji and jk, i.e.,

Ξ(J) = max
1≤i,k≤N,i6=k

{
|jTi jk|

‖ji‖2‖jk‖2

}
. (24)

The mutual coherence Ξ(J) is an important measure in the
field of sparse representations that characterizes the spread
of the columns of matrix J. Ξ(J) takes values within the
range of 0 ≤ Ξ ≤ 1, with a lower value indicating a large
spread and a low coherence. For the data being simulated, the
mutual coherence of the sensitivity matrix is Ξ(J) = 0.9995,
which indicates a high coherence between the columns of
matrix J. Under this condition, the SBL algorithm in [39] has
been proved effective. The SA-SBL algorithm proposed in the
paper is devised through modifications of the SBL algorithm
in [39] and provides reliable image reconstruction even when
the sensitivity matrix J is highly coherent.

In this paper, we assume that the voltage data is corrupted
by a white Gaussian noise, and we define SNR as

SNR , 10 log10

 ‖v‖22
E
(
‖n‖22

)
 . (25)

In this subsection, since we have the ground truth of the
conductivity distribution for the synthetic data, the correlation
coefficient and the relative reconstruction error can be defined
respectively as follows to quantitatively evaluate the recon-
struction accuracy [13]:

Cor =

N∑
i=1

(σi − σ̄) (ςi − ς̄)√√√√ N∑
i=1

(σi − σ̄)
2

N∑
i=1

(ςi − ς̄)2

, (26)

and
Err =

‖σ − ς‖2
‖ς‖2

, (27)

where ς represents the true conductivity variation, and the
number of simplexes in the inverse FEM mesh is N = 3228
in our phantom test. Note that to make the simulation more
realistic and to avoid committing an inverse crime, we utilize
a forward mesh consisting of 6570 domain elements and 304
boundary elements. The adopted forward and inverse FEM
meshes are shown in Fig. 3. It can be observed from Fig. 3
that, the inverse mesh consists of square simplices, while the
forward mesh consists of triangular simplices. We construct
the EIT forward model using the dense mesh, where the
electric field potential of each triangular simplex is derived
from the values of its corresponding vertices. On the other
hand, the conductivity of each square simplex is determined
by the conductivity at the center of the square simplex. Thus,
the inverse mesh used when solving the inverse problem is
totally different from the forward mesh used when generating
the measurement data.

(a) (b)

Fig. 3. Adopted forward and inverse FEM meshes. (a) Forward mesh
consisting of 6570 domain elements and 304 boundary elements. (b) Inverse
mesh consisting of 3228 elements.

First, an illustrative example is presented to evaluate the
performance of the proposed method when resolving multiple
small objects. As shown in Fig. 4, we design a phantom
consisting of three small titanium beta-21S squares with a
conductivity value of 7.407 × 105 S/m and a side length
of 10 mm, and the conductivity of the background saline
is 0.05 S/m. Other simulation settings include an excitation
frequency of 10 kHz and a peak-to-peak amplitude of 1.5 mA.
The iteration termination conditions for the iterative methods
are set to εmin = 1 × 10−5 and ϑmax = 200. The target
objective parameter in the `1 regularization is set as 0.1. The
iteration step of TV regularization is set as 0.01. For AGS
constraint method, the maximum diameter of the group is set
as 6 pixels, and the penalty vector is tuned to

[
1

104 ,
5

104

]
.

All the above simulation settings remains unchanged unless
otherwise stated.

Fig. 4. Ground truth of the generated multiple small objects.

The reconstruction results are given in Table I, where the
plots in each row show the results for a different method,
whereas each column depicts the results corresponding to
different input SNR values. Concretely, in the first three rows
of Table I, the boundary between the two closer squares are
not clearly resolved. However, compared with the other two
methods, Nissinens Bayesian method yields a slightly better
resolution. The methods whose results are provided in the last
three rows of Table I take the signal sparsity into consideration.
However, noticeable artifacts between the pair of close squares
can still be observed with the `1 regularization approach, and
the performance degrades significantly when the input SNR
is low. Both the AGS constraint method and the proposed
SA-SBL based method clearly resolve all three objects, and
the results are insensitiveness to the input SNR. Nevertheless,
the proposed approach better preserves the edge and shape
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TABLE I
ILLUSTRATIVE EXAMPLES OF EIT IMAGE RECONSTRUCTION OF MULTIPLE SMALL OBJECTS.

Methods

SNR
Noiseless 50 dB 40 dB

ART [16]

TV regularization
[18]

Nissinen’s Bayesian
method [49]

`1 regularization
[21]

AGS constraint
method [24]

Proposed SA-SBL
based approach

of each object. For the listed iterative algorithms, convergence
respectively occurs at approximately 150, 30, 10, 70, 150, and
30 iterations, following the order of appearance in Table I. The
following statistical comparison results further demonstrate the
advantages of the proposed SA-SBL technique in terms of the
correlation coefficient and the relative reconstruction error.

We evaluate the statistical performance through 1,000
Monte Carlo trials with the input SNRs ranging from 35 dB
to 70 dB. In Fig. 5, the comparisons are made with respect
to different input SNR values for different approaches. In
addition to the methods examined in Table I, we also included

the SBL approach exploited in our previous work [1] for
comparison. From Fig. 5 we can observe that the AGS, SBL,
and SA-SBL based approaches significantly outperform all
the others, as can be also seen from Table I. It is worth
emphasizing that, the mathematical model of the Bayesian al-
gorithm [49] can be derived equivalently to that of the damped
least-square algorithm [53], which is essentially a generalized
Tikhonov regularization approach. Hence, as expected, they
demonstrate similar performance in reconstruction. Since the
method in this paper is developed on the basis of our previous
work in [1], we place more emphasis on the comparison
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between AGS and SA-SBL based EIT image reconstruction.
As the grouping in AGS method is based on the estimated
conductivity distribution by the one-step Gaussian Newton
solver with Laplacian regularization, which is sensitive to
noise, the performance of AGS degrades when the input SNR
is low. In addition, the AGS method requires troublesome
parameter tuning in practice because different types of weights
are assigned when handling the conductivity distribution with
different extents of sparsity. Therefore, the proposed SA-SBL
based method is advantageous to the AGS constraint method
from both performance and implementation perspectives.

In the following, we demonstrate the superiority of the
proposed method in terms of the image resolution. We consider
a more complicated scenario, which has not been discussed in
the existing literature. Extracellular impedance sensing is a
feasible technique in the biomedical field to detect morpho-
logical changes, membrane permeability, and viability of the
cell spheroids. This technique avoids the use of labels, does
not interfere with normal cellular behavior in vitro, and allows
real-time monitoring of cell spheroids [54]. In the initial stages
of the transfection or protein/organelle extraction procedures,
certain nonionic surfactants, such as Triton X-100 in a proper
concentration level, is widely adopted to permeabilize the
living cell membrane [55]. As the cell membranes generally
show electrically insulating effect at low frequencies, and
the impedance of sensor electrodes is fairly sensitive to any
changes in the permeability and morphology of membranes
and the adherent layers, a remarkable decrease in the conduc-
tivity of the outer layers of the cell spheroids will be induced
as the result of the utilization of nonionic surfactants [54].

To evaluate the performance of the proposed approach in
this challenging scenario, a phantom with a ring shape conduc-
tivity distribution is designed in the COMSOL Multiphysics R©
environment. The ground truth of the synthetic phantom is
illustrated in Fig. 6(a). The radii of the inner and outer
circles are 10 mm and 25 mm, respectively, and the con-
ductivity values of the inner and outer regions are 0.1 S/m
and 0.8 S/m, respectively. For AGS constraint method, the
maximum diameter of the group is set as 8 pixels, and the
penalty vector is tuned to

[
1

104 ,
2

104

]
. Since it has been shown

in Table I and Fig. 5 that AGS and the proposed SA-SBL
based methods significantly outperform the other approaches,
we only provide the results for these two methods together
with another commonly used sparsity-based methods, i.e., `1
regularization method. The result shown in Fig. 6(b) fails to
faithfully render the structure: the reconstructed conductivity
distribution is overly sparse and inaccurate. By contrast, the
ring-shaped structure is recovered with a high fidelity by using
the AGS and SA-SBL based methods, as depicted in Figs. 6(c)
and (d). Between these two methods, the results reconstructed
from the proposed SA-SBL based method clearly exhibit a
better accuracy.

B. Real Data Experiments

The performance of the proposed SA-SBL based EIT re-
construction algorithm is further validated through real data
experiments in this section. The real data experiments are
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Fig. 5. Comparisons of Monte Carlo trial statistics among different methods.
(a) Correlation coefficient. (b) Relative reconstruction error.

(a) (b)

(c) (d)

Fig. 6. Ring-shape conductivity image reconstruction test: (a) Ground truth;
(b) `1 regularization; (c) AGS constraint method; (d) Proposed SA-SBL based
approach.

designed to visualize the complex flow motions inside a
certain boundary, which provides a feasible solution for the
monitoring of the cerebral blood flow (CBF) and diagnosis of
encephalopathy such as cerebral hemorrhagic stroke. CBF is
an important parameter indicating cerebrovascular pathology
and neural activities of the human brain. Existing techniques
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such as computed tomography (CT) and MRI provide global
brain imaging but only show stationary snapshots rather than
continuous monitoring. Positron emission tomography (PET)
produces three-dimensional brain functional images with a
temporal resolution around 30–40 seconds and involves the
use of radioactive material. A fast, portable and cost-effective
diagnostic imaging modality to monitor the CBF is highly
desirable. Since the electrical conductivity of blood is three
to four times higher than the electrical conductivity of the
brain tissue [56], brain impedance is sensitive to variations
of the CBF. Based on this fact, EIT has been utilized in the
neuroimaging field. For instance, strong evidences for EIT
detection of the cerebral hemodynamic response to the neural
stimulus has been demonstrated in [8], [57], [58].

It is worth pointing out that studies in image reconstruction
are still at an early stage currently and applications in practical
biomedical scenarios are far more complicated than laboratory
environment with simplified models and assumptions. Particu-
larly, when imaging a real human head using scalp electrodes,
the poorly conducting skull and other extracerebral layers limit
the injected current to flowing into the brain compartment
[59], [60], and a large proportion of the current is shunted
through the scalp [9], [61]. Therefore, the sensitivity of EIT
to small intracranial conductivity changes is substantially
reduced, making the image reconstruction susceptible to noise
and, thus, the inverse problem becomes even more ill-posed
[61]. This phenomenon is termed as blurring effect [60]. In
addition, the obtainable signal amplitude is limited as the
injected current is constrained by medical safety regulations
[62]. The situation is compounded by the mismodeling effect
[62], since errors in the shape/size of the electrodes/boundary,
in the electrode positions, and in the skin-to-electrode contact
impedance can produce artifacts in the reconstructed images
[63]. In this paper, we are dealing with one of the most
important limitations of the EIT modality, i.e., the partial
volume effect [60] induced by the low spatial resolution.
This has long been a major factor that hinders the practical
application of EIT. As such, other aforementioned potential
difficulties encountered in practical applications are beyond the
scope of this paper and will be addressed in our future work.
The objective of this section is to demonstrate the improved
spatial resolution by SA-SBL and explore its feasibility in
practical medical imaging by conducting experiments in a
cylindrical vessel.

Fig. 7. Experimental EIT measurement system.

The experimental setup comprises a cylindrical vessel with
an inner diameter of 287 mm. A circular section of the vessel
(71 mm from the bottom) is fitted with 16 flush-mounted
stainless-steel plate electrodes, each with a contact area of
6 cm2. These electrodes are wired to an ITS R© v5r model
EIT system for real-time three dimensional industrial process
tomographic imaging. The background substance is saline tap-
water with a height of 132 mm during the experiments. Fig.
7 shows the experimental setting of the system. The system
supports up to 32 electrodes with a working frequency 10 kHz,
and it can deliver up to 650 frames per second (fps) per
plane. In the experiment, the current excitation frequency is
selected as 10 kHz, and the amplitude of the injected current
is 15.17 mA. The adjacent sensing strategy is adopted, and
the amplitude data of the boundary voltage is acquired for
image reconstruction. The room temperature in the laboratory
was 24.8 ◦C. During the entire experiment process of the
experiments, videos are recorded, and the snapshots of these
videos are utilized as references to draw comparisons. A
piston syringe is used to inject the colored solution into the
cylindrical vessel. For both experiments with AGS constraint
method, the maximum diameter of the group is set in the range
6 to 11 pixels, and the penalty vector is tuned in the range[

1
104 ,

2
104

]
to
[

1
104 ,

6
104

]
. In the first real-data experiment, the

target objective parameter in the `1 regularization is changed
to 0.01.

The first real data experiment is designed to simulate the
spurting arterial CBF. By referring to the empirical medical
data in [56], we set the conductivities of the red jet ink and the
background solution to 0.8 S/m and 0.25 S/m respectively to
simulate cerebral blood flow and the rest of brain tissues. For
the convenience of the observation and injection, the needle
is bent to a right angle and dipped into the water, and the
syringe is pressed against the vessel wall. In the first real
data experiment, the frame collection rate is set to 125 fps.
The 1705-th, 1885-th, 2225-th frames of the collected voltage
data are selected to reconstruct the conductivity images of
three major stages using different approaches. The results are
tabulated in Table II. Note that, the conductivity ratio of the
background solution versus the saline ink is low, and the
diffusion of the saline ink will lead to a significant reduction
in the conductivity. As such, visually visible light-colored ink
region can become undetectable if diluted to a certain low
concentration. As expected, the best revivification is achieved
with the proposed SA-SBL method as shown in the last
row of Table II, where the reconstructed high conductivity
region most closely resembles the ground truth presented
in the first row. In comparison, the reconstructed images
with the Nissinen’s Bayesian and `1 regularization methods,
respectively depicted in the second and third rows, are either
excessively smooth or sparse. In addition, Nissinen’s Bayesian
method clearly produces more artifacts in the background
regions when imaging low contrast objects. The results of the
AGS constraint method is shown in the fourth row, where the
spatial resolution approaches the proposed SA-SBL. Both the
proposed SA-SBL and the AGS constraint methods recovered
the image of the needle. However, the AGS constraint method
exhibits clear losses in the shape/edge information, and yields
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TABLE II
IMAGE RECONSTRUCTION RESULTS OF REAL COLLECTED DATA.

Methods

SNR
Frame 1051 Frame 1451 Frame 2231

Ground truth

Nissinen’s Bayesian
method

`1 regularization

AGS constraint
method

Proposed SA-SBL
based approach

very conspicuous artifacts, thus reaffirming the proposed SA-
SBL to be the preferred choice.

In the second real data experiment, more complicated flow
motions, i.e., the swirl and diffusion are considered. The
saline solution of blue jet ink is dripped into the cylindrical
vessel from above the top edge of the vessel wall. We set
the conductivities of the background solution and the blue
solution to 0.014 S/m and 4.21 S/m, respectively. Before
the blue solution is dripped, we stir the background tap-
water clockwise in advance to ensure that the blue solution
drops swirl immediately after they touch the water surface.
The frame collection rate is changed to 156 fps. We select
one frame from every 50 frames between the 573-rd and the
2223-rd frame. The successive video snapshots and the recon-
structed conductivity distribution by using the AGS and SA-
SBL methods for the selected frames are shown in Table III.
The first two rows are ground truths, the third and fourth

rows are the reconstructed results using the AGS method,
and the last two rows are the results of the proposed SA-
SBL method. It is observed that the rotation as well as the
diffusion motions are recovered with both methods. However,
compared with the results obtained by the SA-SBL method,
we observe more artifacts and more discontinuities in the
recovered ink region by the AGS method. Note that, as the
sensitivity map is very sensitive and nonuniform in the near-
boundary region of the sensor, which can be seen in Fig.
2(b), in addition to which, both methods are not based on
smooth penalty, the reconstructed images close to the vessel
wall are likely to suffer from distortion. Nevertheless, as can
be observed in Table III, the proposed SA-SBL based method
yields higher robustness against such unfavorable factors. It is
worth mentioning that, while the contrast between the objects
and the background in the synthetic data experiments is high,
the results obtained in real data experiments provide a different
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TABLE III
SUCCESSIVE RECONSTRUCTED CONDUCTIVITY DISTRIBUTION FRAMES AND GROUND TRUTH.
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perspective for imaging objects with a low contrast.

V. CONCLUSION

The objective of this paper is to develop a novel algorithm
to obtained enhanced EIT image reconstruction by exploit-
ing the structured sparsity in the conductivity distribution.
We redesign the existing SBL algorithm by taking into ac-
count the pattern coupling between adjacent columns that are
not directly neighbored in the target vector. Compared with
the existing state-of-the-art algorithms, the proposed method
achieves a higher spatial resolution. In addition, since the EIT
imaging problem is formulated in a full Bayesian framework,
cumbersome parameter tuning process is avoided.
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