41 research outputs found

    Correlation of Volume Ratio and Normalized Permittivity in Particle Mixture

    Get PDF

    Evaluation of Plasma Extracellular Vesicle MicroRNA Signatures for Lung Adenocarcinoma and Granuloma With Monte-Carlo Feature Selection Method

    Get PDF
    Extracellular Vesicle (EV) is a compilation of secreted vesicles, including micro vesicles, large oncosomes, and exosomes. It can be used in non-invasive diagnosis. MicroRNAs (miRNAs) processed by exosomes can be detected by liquid biopsy. To objectively evaluate the discriminative ability of miRNAs from whole plasma, EV and EV-free plasma, we analyzed the miRNA expression profiles in whole plasma, EV and EV-free plasma of 10 lung adenocarcinoma and 9 granuloma patients. With Monte-Carlo feature selection method, the top discriminative miRNAs in whole plasma, EV and EV-free plasma were identified, and they were quite different. Using the Repeated Incremental Pruning to Produce Error Reduction (RIPPER) method, we learned the classification rules: in whole plasma, granuloma patients did not express hsa-miR-223-3p while the lung adenocarcinoma patients expressed hsa-miR-223-3p; in EV, the hsa-miR-23b-3p was highly expressed in granuloma patients but not lung adenocarcinoma patients; in EV-free plasma, hsa-miR-376a-3p was expressed in granuloma patients but barely expressed in lung adenocarcinoma patients. For prediction performance, whole plasma had the highest weighted accuracy and EV outperformed EV-free plasma. Our results suggested that EV can be used as lung cancer biomarker. However, since it is less stable and not easy to detect, there are still technological difficulties to overcome

    Noninvasive quantification of granzyme B in cardiac allograft rejection using targeted ultrasound imaging

    Get PDF
    ObjectiveEndomyocardial biopsy is the gold standard method for the diagnosis of cardiac allograft rejection. However, it causes damage to the heart. In this study, we developed a noninvasive method for quantification of granzyme B (GzB) in vivo by targeted ultrasound imaging, which detects and provides quantitative information for specific molecules, for acute rejection assessment in a murine cardiac transplantation model.MethodsMicrobubbles bearing anti-GzB antibodies (MBGzb) or isotype antibodies (MBcon) were prepared. Hearts were transplanted from C57BL/6J (allogeneic) or C3H (syngeneic) donors to C3H recipients. Target ultrasound imaging was performed on Days 2 and 5 post-transplantations. A pathologic assessment was performed. The expression of granzyme B and IL-6 in the heart was detected by Western blotting.ResultsAfter MB injection, we observed and collected data at 3 and 6 min before and after the flash pulse. Quantitative analysis revealed that the reduction in peak intensity was significantly higher in the allogeneic MBGzb group than in the allogeneic MBcon group and the isogeneic MBcon group at PODs 2 and 5. In the allogeneic groups, granzyme B and IL-6 expression levels were higher than those in the isogeneic group. In addition, more CD8 T cells and neutrophils were observed in the allogeneic groups.ConclusionUltrasound molecular imaging of granzyme B can be used as a noninvasive method for acute rejection detection after cardiac transplantation

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Mg-porphyrin complex doped divinylbenzene based porous organic polymers (POPs) as highly efficient heterogeneous catalysts for the conversion of CO2 to cyclic carbonates

    No full text
    A series of Mg-porphyrin complex doped divinylbenzene (DVB) based porous organic polymers (POPs) were systematically afforded through the method of free radical polymerization under solvothermal conditions. These POP catalysts have physical advantages of high surface areas, hierarchical pore structures, high thermal stability and spatially separated active Mg-porphyrin sites, which lead to very high efficiency in the conversion of CO2 to cyclic carbonates with the aid of tetra-n-butyl ammonium bromide (TBAB) as a nucleophile. The effect of the doping ratio (Mg-porphyrin complex to DVB) on catalytic efficiency was studied and discussed, and the detrimental embedding effect was found. The effects of reaction temperature and pressure on catalytic activity as well as other epoxide substrates were also examined fully. More importantly, under very mild conditions (30 degrees C, 0.1 MPa CO2), a considerable turnover number (TON) value of 1800 was obtained. The heterogeneous POP catalyst can be easily recovered and reused 10 times without loss of activity

    Information privacy concern about peer disclosure in online social networks

    No full text

    Fluorogenic Aptamer-Based Hybridization Chain Reaction for Signal-Amplified Imaging of Apurinic/Apyrimidinic Endonuclease 1 in Living Cells

    No full text
    A fluorogenic aptamer (FA)-based hybridization chain reaction (HCR) could provide a sensitive and label-free signal amplification method for imaging molecules in living cells. However, existing FA-HCR methods usually face some problems, such as a complicated design and significant background leakage, which greatly limit their application. Herein, we developed an FA-centered HCR (FAC-HCR) method based on a remote toehold-mediated strand displacement reaction. Compared to traditional HCRs mediated by four hairpin probes (HPs) and two HPs, the FAC-HCR displayed significantly decreased background leakage and improved sensitivity. Furthermore, the FAC-HCR was used to test a non-nucleic acid target, apurinic/apyrimidinic endonuclease 1 (APE1), an important BER-involved endonuclease. The fluorescence analysis results confirmed that FAC-HCR can reach a detection limit of 0.1174 U/mL. By using the two HPs for FAC-HCR with polyetherimide-based nanoparticles, the activity of APE1 in living cells can be imaged. In summary, this study could provide a new idea to design an FA-based HCR and improve the performance of HCRs in live cell imaging

    3D-CEUS tracking of injectable chemo-sonodynamic therapy-enabled mop-up of residual renal cell carcinoma after thermal ablation

    No full text
    Thermal ablation (TA), as a minimally invasive therapeutic technique, has been extensively used to the treatment of solid tumors, such as renal cell carcinoma (RCC), which, unfortunately, still fails to overcome the high risk of local recurrence and distant metastasis since the incomplete ablation cannot be ignored due to various factors such as the indistinguishable tumor margins and limited ablation zone. Herein, we report the injectable thermosensitive hydrogel by confining curcumin (Cur)-loaded hollow mesoporous organosilica nanoparticles (Cur@HMON@gel) which can locate in tumor site more than half a month and mop up the residual RCC under ultrasound (US) irradiation after transforming from colloidal sol status to elastic gel matrix at physiological temperature. Based on the US-triggered accelerated diffusion of the model chemotherapy drug with multi-pharmacologic functions, the sustained and controlled release of Cur has been demonstrated in vitro. Significantly, US is employed as an external energy to trigger Cur, as a sonosensitizer also, to generate reactive oxygen species (ROS) for sonodynamic tumor therapy (SDT) in parallel. Tracking by the three-dimensional contrast-enhanced ultrasound (3D-CEUS) imaging, the typical decreased blood perfusions have been observed since the residual xenograft tumor after incomplete TA were effectively suppressed during the chemo-sonodynamic therapy process. The high in vivo biocompatibility and biodegradability of the multifunctional nanoplatform confined by thermogel provide the potential of their further clinical translation for the solid tumor eradication under the guidance and monitoring of 3D-CEUS
    corecore