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Extracellular Vesicle (EV) is a compilation of secreted vesicles, including micro vesicles,
large oncosomes, and exosomes. It can be used in non-invasive diagnosis. MicroRNAs
(miRNAs) processed by exosomes can be detected by liquid biopsy. To objectively
evaluate the discriminative ability of miRNAs from whole plasma, EV and EV-free
plasma, we analyzed the miRNA expression profiles in whole plasma, EV and EV-free
plasma of 10 lung adenocarcinoma and 9 granuloma patients. With Monte-Carlo feature
selection method, the top discriminative miRNAs in whole plasma, EV and EV-free
plasma were identified, and they were quite different. Using the Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) method, we learned the classification
rules: in whole plasma, granuloma patients did not express hsa-miR-223-3p while the
lung adenocarcinoma patients expressed hsa-miR-223-3p; in EV, the hsa-miR-23b-3p
was highly expressed in granuloma patients but not lung adenocarcinoma patients;
in EV-free plasma, hsa-miR-376a-3p was expressed in granuloma patients but barely
expressed in lung adenocarcinoma patients. For prediction performance, whole plasma
had the highest weighted accuracy and EV outperformed EV-free plasma. Our results
suggested that EV can be used as lung cancer biomarker. However, since it is less
stable and not easy to detect, there are still technological difficulties to overcome.

Keywords: microRNA signatures, biomarker, classification, lung adenocarcinoma, granuloma

INTRODUCTION

Blood is a mixture of plasma, blood platelet and various blood cells, such as erythrocytes, leukocytes,
neutrophilic granulocytes, eosinophilic granulocytes, basophilic granulocytes, monocytes, and
lymphocytes (Basu and Kulkarni, 2014). It can reflect the body health and wellness. Extracellular
Vesicle (EV) is a compilation of secreted vesicles, including micro vesicles, large oncosomes,
and exosomes (Lawson et al., 2018). Exosomes, with a diameter of 30–100 nm, are a kind of
membrane-bound EVs and originate from endosome (Raposo and Stoorvogel, 2013). Nearly all
kinds of cells can secrete exosomes whether under normal or stressful conditions (Srivastava
et al., 2015). When compared with normal cells, tumor cells of the specific organs have been
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proven to secrete more exosomes. Besides, the membrane of
exosomes richly contains plenty of functional proteins, including
tetraspanin, endosome-related membrane transport and fusion
proteins and multivesicular bodies-genesis proteins, and thus
exosomes could be applied as biomarkers (O’Driscoll, 2015).
Exosomes can be extracted from diverse body fluids, which
contain numerous biological molecules (DNAs, RNAs, and
proteins). Recently, liquid biopsy has been developed as a novel,
non-invasive diagnosis method to explore tumor development
(Sheridan, 2016).

MicroRNAs (miRNAs) processed by exosomes could be
detected by liquid biopsy (Iranifar et al., 2019). miRNAs are
a group of non-coding RNAs, which regulate gene expression
at the post-transcriptional and translational levels (Inamura,
2017). Dysregulation of miRNA expression is related to the
progression of lung adenocarcinoma. Besides, Nadal et al. (2014)
have demonstrated that different morphological subtypes of
lung adenocarcinoma have specific miRNA expression profiles,
for instance, miR-212-3p, miR-132-5p, and miR-27a-3p are
found significantly upregulated in adenocarcinomas with solid
subtype. A mass of miRNAs play important roles in the process
of lung cancer pathogenesis and are recognized as potential
diagnostic biomarkers and tumor targeted therapeutic molecules
(Inamura, 2017).

As a well-studied, common cancer, lung cancer maintains
the leading cause of cancer-specific death around the world.
Adenocarcinoma accounts for nearly half of all lung cancer types,
remaining the most common histologic subtype (Travis et al.,
2011; Rosell and Karachaliou, 2018). Although the development
of new therapies has significantly improved the prognosis of
patients with lung adenocarcinoma, the 5-year survival rate
remains low (less than 16%) (Crino et al., 2010).

To evaluate the discriminative ability of miRNAs from whole
plasma, EV, and EV-free plasma, we analyzed the miRNA
expression profiles in whole plasma, EV, and EV-free plasma
of lung adenocarcinoma and granuloma patients. The same
feature selection method, Monte-Carlo feature selection and the
same rule learner, Repeated Incremental Pruning to Produce
Error Reduction (RIPPER), were applied in the three miRNA
expression datasets for lung adenocarcinoma and granuloma
patients. The prediction performances and classification rules
of whole plasma, EV, and EV-free plasma were compared and
analyzed. Our results suggested that the prediction performance
of EV miRNAs was better than EV-free plasma miRNAs. What’s
more, we identified EV specific miRNA expression pattern in
lung cancer. These results supported the usage of EV miRNAs as
lung cancer biomarkers but the whole plasma achieved a better
prediction performance. The utilization of EV biomarkers still
has a long way to go.

MATERIALS AND METHODS

The MicroRNA Expression Profiles in
Whole Plasma, EV, and EV-Free Plasma
We downloaded the processed miRNA expression profiles
in whole plasma, EV, and EV-free plasma of 10 lung

adenocarcinoma patients and the miRNA expression profiles in
whole plasma, EV and EV-free plasma of 9 granuloma patients
from GEO (Gene Expression Omnibus) under accession number
of GSE71661 on August 30, 2018. The expression levels of
miRNAs were measured with next generation sequencing using
Illumina HiSeq 2500. The reads were mapped onto known
human miRNA in miRbase Release 21 using Blast and Bowtie.
The mapped reads were normalized with the total number of
reads. In each miRNA dataset of whole plasma, EV, and EV-free
plasma, there were 10 lung adenocarcinoma and 9 granuloma
patients; there were 1,509 miRNAs. The downloaded miRNA
profiles were provided in Supplementary Table S1.

To systematically compare the miRNA expression difference
between lung adenocarcinoma and granuloma patients, whole
plasma, EV, and EV-free plasma were analyzed separately. Our
goal was to compare their prediction performance and unique
expression of miRNAs.

Key MicroRNAs in Whole Plasma, EV,
and EV-Free Plasma Identified With
Monte-Carlo Feature Selection
Since there were 19 samples and 1,509 miRNA features in
whole plasma, EV, and EV-free plasma dataset, the number
of features was much greater than the sample size. If we
use all miRNAs to build the classification model, all samples
will be perfectly classified. But it will be overfitting and
will have no actual meanings. Therefore, we adopted the
Monte-Carlo feature selection (Draminski et al., 2008) to
identify the key miRNA features and then used these few
key features to construct the classification model. The Monte-
Carlo feature selection method has been widely used and has
achieved great performance in many fields (Chen et al., 2018c,e;
Pan et al., 2019).

The Monte-Carlo feature selection method will randomly
choose several features multiple times and then construct a
series of tree classifiers (Chen et al., 2018a; Pan et al., 2018b;
Wang et al., 2018). Based on the frequency and classification
accuracies of the feature nodes on these classification trees,
each feature will be assigned with a relative importance.
Intuitively speaking, if a feature has been selected many times
to construct the classification tree, it is important as the
classification tree will find the most discriminative features
to be the nodes.

Let’s denote the total number of miRNA features with d, i.e.,
1,509 in this study. m miRNA features (m�d) will be randomly
selected and be used to construct t classification trees for s times.
Each of the t trees was trained and tested based on the training
and test patient samples randomly divided from the full dataset.
Therefore, s · t classification trees will be constructed. Based on
how many times a miRNA feature g has been selected by these
s · t trees and how much this miRNA feature g has contributed to
the classification of the s · t trees, its relative importance (RI) can
be calculated:

RIg =

st∑
τ=1

(wAcc)u
∑
ng(τ )

IG
(
ng(τ )

) (no · in ng(τ )

no · inτ

)v
(1)
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FIGURE 1 | The heatmaps of top 10 microRNAs in whole plasma, EV, and EV-free plasma. (A) For whole plasma, there were two miss clustered cancer patients;
(B) for EV, there was one miss clustered granuloma patient; (C) for EV-free plasma, the cluster pattern was not clear.
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FIGURE 2 | The Venn Diagram of the top 10, 15, and 20 discriminative microRNAs in whole plasma, EV and EV-free plasma. (A) The overlap among the top 10
microRNAs. There was only one overlapped microRNA between whole plasma and EV. The overlap microRNA was hsa-miR-5010-5p. (B) The overlap among the
top 15 microRNAs. (C) The overlap among the top 20 microRNAs.

where wAcc is the weighted classification accuracy of decision
tree τ , IG(ng(τ )) is the information gain of node ng(τ ), which
is a decision rule using the expression levels of miRNA feature
g, (no · in ng(τ )) is the number of samples under node ng(τ ),
(no · in τ ) is the number of samples in decision tree τ , u, and
v are adjust parameters.

By analyzing the s · t classification trees, each miRNA feature
will be assigned with a RI and will be ranked decreasingly.

The Monte-Carlo feature selection method was applied using
the dmLab software (Draminski et al., 2008) downloaded from
http://www.ipipan.eu/staff/m.draminski/mcfs.html.

Classification Rules for Lung
Adenocarcinoma and Granuloma in
Whole Plasma, EV, and EV-Free
Plasma Learned With RIPPER
Repeated Incremental Pruning to Produce Error Reduction is a
widely used method to learn the classification rules (Cai et al.,
2018; Chen et al., 2018a,c,e,f; Pan et al., 2018a). Since we want
to evaluate the prediction performance objectively, we did the
10-fold cross-validation for three times and combined the three-
time results. In each cross validation (Wang et al., 2017; Zhang
et al., 2017; Chen et al., 2018b,d; Li et al., 2018), the samples
were randomly divided into 10 parts and each part was used
as test dataset for once. After 10 rounds, all samples have been
tested. As the random splits of data may cause bias, we repeated
the 10-fold cross-validation for three times. In this study, the
lung adenocarcinoma patients and granuloma patients were
treated as positive samples and negative samples, respectively.
We used weighted accuracy to evaluate the RIPPER prediction

performance, i.e., the average of the accuracies of positive samples
and negative samples.

RESULTS

The Discriminative MicroRNAs Between
Lung Adenocarcinoma and Granuloma
Patients in Whole Plasma, EV, and
EV-Free Plasma
The miRNA expression profiles of lung adenocarcinoma
and granuloma patients in whole plasma, EV and EV-free
plasma were analyzed separately. In whole plasma, the top
10 discriminative miRNAs were hsa-miR-223-3p, hsa-miR-
501-5p, hsa-miR-130b-3p, hsa-miR-5010-5p, hsa-miR-330-5p,
hsa-miR-378f, hsa-miR-3158-3p, hsa-miR-542-3p, hsa-miR-
183-5p and hsa-miR-942-5p. In EV, the top 10 discriminative
miRNAs were hsa-miR-23b-3p, hsa-miR-548ac, hsa-miR-
3126-3p, hsa-miR-15b-5p, hsa-miR-205-5p, hsa-miR-5010-5p,
hsa-miR-331-5p, hsa-miR-1249-3p, hsa-miR-548c-5p, and
hsa-miR-1827. In EV-free plasma, the top 10 discriminative
miRNAs were hsa-miR-511-3p, hsa-miR-376a-3p, hsa-miR-
3150b-3p, hsa-miR-3150b-5p, hsa-miR-3168, hsa-miR-98-5p,
hsa-miR-3136-5p, hsa-miR-210-5p, hsa-miR-340-3p, and hsa-
miR-636. Figure 1 shows the heatmaps of the top 10 miRNAs
in whole plasma, EV and EV-free plasma. The miRNAs and
patients were clustered using ward D2 method (Murtagh and
Legendre, 2014) based on Euclidean distance. The R package
pheatmap1 was applied to plot the heatmaps. It can be seen

1https://CRAN.R-project.org/package=pheatmap
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from Figure 1 that for whole plasma, there were two miss
clustered cancer patients; for EV, there was one miss clustered
granuloma patient; for EV-free plasma, the cluster pattern was
not clear. The miRNAs in EV-free plasma were not suitable as
cancer biomarkers.

We plotted the Venn Diagram of the top 10 discriminative
miRNAs in whole plasma, EV and EV-free plasma in Figure 2A.
There was only one overlapped miRNA between whole plasma
and EV. The overlap miRNA was hsa-miR-5010-5p. It can
be seen that the miRNA expression pattern was different in
whole plasma, EV and EV-free plasma. It was necessary to
investigate which blood compartments should be used for
biomarker discovery.

To investigate whether the overlap pattern would change when
more miRNAs were analyzed, we plotted Venn Diagrams of
the top 15 and top 20 miRNAs as Figures 2B,C, respectively.
There was still no overlap among the whole plasma, EV and
EV-free plasma. The overlap between whole plasma and EV
became larger when more top miRNAs were included but the
overlap between EV and EV-free plasma remained to be one no
matter whether the top 15 or 20 miRNAs were analyzed. The EV
miRNAs were more similar with the whole plasma miRNAs than
the EV-free plasma miRNAs.

The Prediction Accuracies of MicroRNA
Signatures for Lung Adenocarcinoma
and Granuloma Patients in Whole
Plasma, EV, and EV-Free Plasma
We evaluated the prediction accuracies of miRNA signatures for
lung adenocarcinoma and granuloma patients in whole plasma,
EV and EV-free plasma with 10-fold cross validations. To avoid
the bias of random splits of samples, we repeated the 10-fold
cross validation for three times. Therefore, the samples size in the
confusion matrix will be the original sample size 19 multiplied
by 3 which was 57.

The confusion matrices of miRNA signatures in whole
plasma, EV and EV-free plasma were given in Table 1. The
weighted accuracies using whole plasma, EV and EV-free
plasma miRNA data were 77.22, 65.19, and 64.82%, respectively.
The EV miRNAs performed better than the EV-free plasma
miRNAs. The accuracy of granuloma in EV-free plasma, 29.63%,
was extremely low.

The Classification Rules in Whole
Plasma, EV, and EV-Free Plasma
With the RIPPER method, we learned the classifications of
miRNA expression levels in whole plasma, EV and EV-free
plasma. These rules were given in Table 2. In whole plasma,
granuloma patients did not express hsa-miR-223-3p while the
lung adenocarcinoma patients expressed hsa-miR-223-3p. In
EV, the hsa-miR-23b-3p was highly expressed in granuloma
patients but not lung adenocarcinoma patients. In EV-free
plasma, hsa-miR-376a-3p was expressed in granuloma patients
but barely expressed in lung adenocarcinoma patients. We
compared the mean expression levels of hsa-miR-23b-3p in
whole plasma cancer, whole plasma granuloma, EV cancer TA
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TABLE 2 | The RIPPER rules in whole plasma, EV and EV-free plasma.

Whole plasma EV EV-free plasma

Granuloma hsa-miR-223-3p <= 0 Granuloma hsa-miR-23b-3p >= 210.43 Granuloma hsa-miR-376a-3p >= 4.50

Adenocarcinoma Others Adenocarcinoma Others Adenocarcinoma Others

and EV granuloma. We found that in EV, hsa-miR-23b-3p
was more highly expressed in granuloma than cancer with
a fold change of 1.82, while in whole plasma, hsa-miR-23b-
3p was more lowly expressed in granuloma than cancer with
fold change of 0.84. What’s more, we compared the mean
expression levels of hsa-miR-376a-3p in EV-free plasma as well.
We found that in EV-free plasma, the mean expression levels
of hsa-miR-376a-3p in cancer and granuloma were 0 and 10.30,
respectively, while in whole plasma, the mean expression levels
of hsa-miR-376a-3p in cancer and granuloma were 1.45 and
0, respectively. The expression pattern between EV or EV-free
plasma and whole plasma were different. These results suggested
it was necessary to measure the EV, EV-free plasma and whole
plasma, separately.

hsa-miR-223-3p was reported to have an increased expression
in H. pylori-infected gastric cancer patients, which was related to
progressive proliferation and migration of cancer cells (Ma et al.,
2014; Wang et al., 2015). Thus, in plasma, the expression of hsa-
miR-223-3p in granuloma patients would not be as high as in
cancer patients.

Zhou et al. (2015) found that cancer patients with higher
expression of has-miR-23b had better outcomes then those with
lower expression. In our study, we found that has-miR-23b-3p
had higher expression in granuloma patients compared to in lung
adenocarcinoma patients.

Joerger et al. (2014) reported that hsa-miR-376a was
insensitive to perturbations in advanced non-small cell lung
cancer patients. We found has-miR-376a-3p had a higher
expression in granuloma patients, while its expression was very
low in lung adenocarcinoma patients.

DISCUSSION

We identified the discriminative miRNAs in different blood
compartments, such as hsa-miR-501-5p and hsa-miR-130b-3p
in plasma; hsa-miR-548ac in EV and hsa-miR-511-3p in EV-
free plasma.

hsa-miR-501 has been proven to have an association with
clear cell renal cell carcinoma (Liu et al., 2018), pancreatic ductal
adenocarcinoma (Liao et al., 2018), cervical cancer (Guo et al.,
2018) and so on. Besides, they all found upregulation of has-miR-
501 enhances tumor cell proliferation, migration and invasion.

hsa-miR-130b-3p is a novel miRNA in lung cancer, we
found hsa-miR-130b-3p are upregulated in the plasma of lung
cancer patients, which would be applied as a new biomarker to
distinguish cancer and granuloma, and further guide therapeutic
decisions clinically.

As for hsa-miR-548, Liu et al. (2015) investigated hsa-miR-548
expression in fresh tumor tissues from 22 patients with primary

non-small cell lung cancer via RT-PCR and they found that the
hsa-miR-548 expression level was significantly higher (p < 0.01)
in adjacent non-tumor tissues than that in the tumor. That is,
non-small cell lung cancer would down-regulate the expression
of hsa-miR-548. Furthermore, they also observed that hsa-miR-
548 was involved in the migration and invasion of non-small cell
lung cancer cells by targeting the AKT1 signaling pathway.

For hsa-miR-511-3p, it has been reported to be related to
lung adenocarcinoma by triggering BAX (Zhang et al., 2014) and
TRIB2 (Zhang et al., 2012).

As for the diagnostic value, plasma is the most valuable,
followed by EV and EV-free plasma. Previous studies have
demonstrated that exosomes can be used as a type of novel
biomarker for tumors and some benign diseases (Principe
et al., 2013; Vella et al., 2016). Considering the diagnostic
value of testing plasma is better than testing exosomes
in plasma, many useful information may be missed when
only exosomes in plasma were tested. The reasons are as
follows: (1) Methods like OptiPrepTM density-based separation
(DG-Exos), ultracentrifugation (UC-Exos), and immunoaffinity
capture using anti-EpCAM-coated magnetic beads (IAC-Exos)
are not effective enough to isolate exosomes and may destroy
exosomes during the isolation process (Greening et al., 2015);
(2) exosomes are not stable and are easily degraded, which could
cause a bias (Kumar et al., 2018).

Since the sample size of this study was limited, the results
should be validated in an independent large cohort. Another
factor that may have affected the results was the disease type.
For lung adenocarcinoma, the results were like this. But for
other diseases, which release a large amount of RNAs and
proteins into the circulatory system directly, the importance of
exosome may decrease.

CONCLUSION

Extracellular Vesicle is a promising technology for non-invasive
diagnosis. miRNAs processed by exosomes can be detected
by liquid biopsy and used as biomarkers. To evaluate the
discriminative ability of miRNAs from whole plasma, EV and
EV-free plasma, we analyzed the miRNA expression profiles in
whole plasma, EV and EV-free plasma of lung adenocarcinoma
and granuloma patients. We found that the top discriminative
miRNAs in whole plasma, EV and EV-free plasma were
quite different, and the classification rules also varied. The
prediction performance of whole plasma was the best but the EV
outperformed EV-free plasma. Our results suggested that EV can
be used as a lung cancer biomarker but EV may be less stable or
difficult to detect than whole plasma, therefore, the whole plasma
was still a good choice as lung cancer signatures.
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