47 research outputs found

    Quantum image rain removal: second-order photon number fluctuation correlations in the time domain

    Full text link
    Falling raindrops are usually considered purely negative factors for traditional optical imaging because they generate not only rain streaks but also rain fog, resulting in a decrease in the visual quality of images. However, this work demonstrates that the image degradation caused by falling raindrops can be eliminated by the raindrops themselves. The temporal second-order correlation properties of the photon number fluctuation introduced by falling raindrops has a remarkable attribute: the rain streak photons and rain fog photons result in the absence of a stable second-order photon number correlation, while this stable correlation exists for photons that do not interact with raindrops. This fundamental difference indicates that the noise caused by falling raindrops can be eliminated by measuring the second-order photon number fluctuation correlation in the time domain. The simulation and experimental results demonstrate that the rain removal effect of this method is even better than that of deep learning methods when the integration time of each measurement event is short. This high-efficient quantum rain removal method can be used independently or integrated into deep learning algorithms to provide front-end processing and high-quality materials for deep learning.Comment: 5 pages, 7 figure

    Quantum defogging: temporal photon number fluctuation correlation in time-variant fog scattering medium

    Full text link
    The conventional McCartney model simplifies fog as a scattering medium with space-time invariance, as the time-variant nature of fog is a pure noise for classical optical imaging. In this letter, an opposite finding to traditional idea is reported. The time parameter is incorporated into the McCartney model to account for photon number fluctuation introduced by time-variant fog. We demonstrated that the randomness of ambient photons in the time domain results in the absence of a stable correlation, while the scattering photons are the opposite. This difference can be measured by photon number fluctuation correlation when two conditions are met. A defogging image is reconstructed from the target's information carried by scattering light. Thus, the noise introduced by time-variant fog is eliminated by itself. Distinguishable images can be obtained even when the target is indistinguishable by conventional cameras, providing a prerequisite for subsequent high-level computer vision tasks.Comment: 6 pages, 9 figure

    Chinese Angelica Polysaccharide (CAP) Alleviates LPS-Induced Inflammation and Apoptosis by Down-Regulating COX-1 in PC12 Cells

    Get PDF
    Background/Aims: Chinese angelica polysaccharide (CAP) is the main effective ingredient of angelica sinensis and exerts anti-inflammatory and anti-apoptotic effects on many diseases. This study aimed to explore the pharmacological potential of CAP on spinal cord injury (SCI). Methods: PC12 cells were pretreated by CAP and were subjected to LPS. Transfection was performed to alter the expression of COX-1. Cell viability and apoptotic cell rate were measured by CCK-8 and flow cytometry respectively. qRT-PCR and western blot analysis were performed to assess the expression changes of pro-inflammatory cytokines, apoptosis-related factor and core kinases in PI3K/AKT pathway. Results: LPS stimulation induced significant cell damage in PC12 cells as cell viability was repressed, apoptosis was induced and the expression levels of IL-1β, IL-6, IL-8, and TNF-α were increased. CAP pretreatment protected PC12 cells against LPS-induced cell damage. Meanwhile CAP treatment reduced the expression of COX-1 even in LPS-stimulated PC12 cells. More importantly, COX-1 overexpression abolished the protective effects of CAP on LPS-injured PC12 cells. Finally, Western blot analytical results showed that CAP activated PI3K/AKT pathway also in a COX-1-dependent manner. Conclusion: CAP exerted anti-apoptotic and anti-inflammatory effects on LPS-injured PC12 cells via down-regulation of COX-1

    Resident Immune Cells of the Liver in the Tumor Microenvironment

    Get PDF
    The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options
    corecore