59 research outputs found

    Loading Deformation On Various Timescales Using Gps And Grace Measurements

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2012Tidal, seasonal and long-term surface mass movements cause the earth to deform and the gravity field to change. Current geodetic satellites, GPS and GRACE, accurately measure these geophysical signals. I examine the effect on GPS solutions of using inconsistent reference frames to model ocean tidal loading (OTL). For seasonal loading, I choose two study areas, Nepal Himalaya and southern Alaska, and compare GPS-measured and GRACE-modeled seasonal hydrological ground loading deformation. Globally distributed stations are employed to compare GPS coordinate solutions with OTL corrections computed in different reference frames: center of mass of the solid Earth (CE), and center of mass of the Earth system (CM). A strong spectral peak at a period of ~14 days appears when inconsistent OTL models are applied along with smaller peaks at ~annual and ~semi-annual periods. Users of orbit/clock products must ensure to use OTL coefficients computed in the same frame as the OTL coefficients used by the analysis centers; otherwise, systematic errors will be introduced into position solutions. Continuous GPS measurements of seasonal deformation in Nepal Himalaya are compared with load model predictions derived from GRACE observations. The GPS seasonal height variation and GRACE-modeled seasonal vertical displacement due to the changing hydrologic load exhibit consistent results, for both amplitude and phase. GRACE indicates a long-term mass loss in the Himalaya region, which leads to crustal uplift since the earth behaves as an elastic body. We model this effect and remove it from GPS observed vertical rates. Then most GPS vertical rates can be explained by interseismic strain from the Main Himalayan Thrust. In southern Alaska, vertical seasonal loading deformation observed by GPS stations and modeled displacements due to seasonal hydrological loading inferred from GRACE are highly correlated. The effects of atmosphere and non-tidal ocean loading are important. Adding the AOD1B de-aliasing model to the GRACE solutions improves the correlation between these two geodetic measurements, because the displacements due to these loads are present in the GPS data. Weak correlations are found for some stations located in areas where the magnitude of the load changes over a short distance, due to GRACE's limited spatial resolution

    Earth’s Subdecadal Angular Momentum Balance from Deformation and Rotation Data

    Get PDF
    Length-of-Day (LOD) measurements represent variations in the angular momentum of the solid Earth (crust and mantle). There is a known ~6-year LOD signal suspected to be due to core-mantle coupling. If it is, then the core flow associated with the 6-year LOD signal may also deform the mantle, causing a 6-year signal in the deformation of the Earth’s surface. Stacking of Global Positioning System (GPS) data is found to contain a ~6-year radial deformation signal. We inverted the deformation signal for the outer core’s flow and equivalent angular momentum changes, finding good agreement with the LOD signal in some cases. These results support the idea of subdecadal core-mantle coupling, but are not robust. Interpretation of the results must also take into account methodological limitations. Gravitational field changes resulting from solid Earth deformation were also computed and found to be smaller than the errors in the currently available data

    The 2014 M_w 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow Asperity and Rapid Afterslip

    Get PDF
    The Mw 6.1 South Napa earthquake occurred near Napa, California, on 24 August 2014 at 10:20:44.03 (UTC) and was the largest inland earthquake in northern California since the 1989 Mw 6.9 Loma Prieta earthquake. The first report of the earthquake from the Northern California Earthquake Data Center (NCEDC) indicates a hypocentral depth of 11.0 km with longitude and latitude of (122.3105° W, 38.217° N). Surface rupture was documented by field observations and Light Detection and Ranging (LiDAR) imaging (Brooks et al., 2014; Hudnut et al., 2014; Brocher et al., 2015), with about 12 km of continuous rupture starting near the epicenter and extending to the northwest. The southern part of the rupture is relatively straight, but the strike changes by about 15° at the northern end over a 6 km segment. The peak dextral offset was observed near the Buhman residence with right‐lateral motion of 46 cm, near the location where the strike of fault begins to rotate clockwise (Hudnut et al., 2014). The earthquake was well recorded by the strong‐motion network operated by the NCEDC, the California Geological Survey and the U.S. Geological Survey (USGS). There are about 12 sites within an epicentral distance of 15 km that had relatively good azimuthal coverage (Fig. 1). The largest peak ground velocity (PGV) of nearly 100  cm/s was observed on station 1765, which is the closest station to the rupture and lies about 3 km east of the northern segment (Fig. 1). The ground deformation associated with the earthquake was also well recorded by the high resolution COSMO–SkyMed (CSK) satellite and Sentinel-1A satellite, providing independent static observations

    Tracking the weight of Hurricane Harvey’s stormwater using GPS data

    Get PDF
    On 26 August 2017, Hurricane Harvey struck the Gulf Coast as a category four cyclone depositing ~95 km3 of water, making it the wettest cyclone in U.S. history. Water left in Harvey’s wake should cause elastic loading and subsidence of Earth’s crust, and uplift as it drains into the ocean and evaporates. To track daily changes of transient water storage, we use Global Positioning System (GPS) measurements, finding a clear migration of subsidence (up to 21 mm) and horizontal motion (up to 4 mm) across the Gulf Coast, followed by gradual uplift over a 5-week period. Inversion of these data shows that a third of Harvey’s total stormwater was captured on land (25.7 ± 3.0 km3 ), indicating that the rest drained rapidly into the ocean at a rate of 8.2 km3 /day, with the remaining stored water gradually lost over the following 5 weeks at ~1 km3 /day, primarily by evapotranspiration. These results indicate that GPS networks can remotely track the spatial extent and daily evolution of terrestrial water storage following transient, extreme precipitation events, with implications for improving operational flood forecasts and understanding the response of drainage systems to large influxes of water

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    TEMPERATURE COMPENSATION STRATEGY OF PRESSURE SENSOR BASED ON BP NEURAL NETWORK OPTIMIZED BY GLOWWORM SWARM OPTIMIZATION

    No full text
    In order to solve the problem that temperature drift of silicon piezoresistive pressure sensor affects the accuracy of engineering measurement,proposed a temperature compensation strategy for BP neural network based on glowworm swarm optimization. The generalized BP neural network is used to optimize the weights and thresholds by using the firefly algorithm,thus improving the generalization performance and searching speed of the neural network,carried out temperature compensation of pressure sensor by optimized BP neural network. The temperature compensation performance of optimized BP neural network compares to that of conventional neural network and particle swarm optimization neural network. The results showed that compared with the conventional neural network and PSO optimization BP neural network,the optimized GSO optimization BP neural network is effective.The compensation error of GSO-BP neural network is 52% less than that of BP and 23% less than that of PSO-BP.Considering the time of compensation,the comprehensive performance of the BP neural network optimized by GSO is better.The compensated sensor data meet the experimental requirements of the subject.The compensation algorithm is feasible

    Supporting Datasets for: "Sensitivity of GNSS-Derived Estimates of Terrestrial Water Storage to Assumed Earth Structure"

    No full text
    "Dataset_S1" contains the list of GPS stations used to estimate seasonal changes in terrestrial water storage within the western U.S. between January 2006 and September 2022.The file is formatted as follows:StationLat(+N,Deg) StationLon(+E,deg) StationID"Dataset_S2" contain solution and input load files for the synthetic tests presented as a part of this study. Each file's name describes the spatial size of the load model the file corresponds to, whether the file represented an inversion solution or an input load, and the Earth model used in the inversion. The files are formatted as follows: LoadCellLat(+N,deg) LoadCellLon(+E,deg) LoadCellHeight(m)"Dataset_S3" contains monthly estimates of seasonal terrestrial water storage within the western U.S. derived from GPS observed vertical displacement between January 2006 and September 2022. Each file's name describe the Earth model used to estimate changes in seasonal water storage. The files are formatted as follows: LoadCellLat(+N,deg) LoadCellLon(+E,deg) MonthlyTWS(m)Please refer to the manuscript for additional details of these datasets.</p
    corecore