4 research outputs found

    On the Location of Multiple Failure Slip Surfaces in Slope Stability Problems Using the Meshless SPH Algorithm

    No full text
    The occurrence of multiple critical slip surfaces with equal importance in rehabilitating and reinforcing slopes has been frequently observed in geotechnical engineering practices. The simultaneous determination of these potential slip surfaces is, however, not trivial. This paper presents a methodology based on the smoothed particle hydrodynamics (SPH) approach, which can simultaneously determine multiple failure slip surfaces and the debris flow process without previous knowledge or trial-and-error processes, and this methodology is validated against a slope with the presence of multiple critical slip surfaces. The proposed methodology serves as an efficient and effective alternative approach to traditional approaches, which involve cumbersome treatments performed by engineers based on their subjective experiences. The multiple sources of failure slip surfaces in slope stability are equivalent to multiple sources of initiation of slope failure, and it is found that SPH can provide a direct and systematic tool for identifying multiple failure slip surfaces. However, some minor potential problems are also found with the use of the SPH method in actual applications
    corecore