56 research outputs found

    The pervasive and multifaceted influence of biocrusts on water in the world's drylands

    Get PDF
    The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (−40%) and commence runoff (−33%), and reduced infiltration (−34%) and sediment production (−68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (−56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.This work was conducted as part of the Powell Working Group “Completing the dryland puzzle: creating a predictive framework for biological soil crust function and response to climate change” supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the US Geological Survey. J.B. and S.R. were funded by USGS Ecosystems and Land Use Change Mission Areas, by the US Department of Energy (DESC-0008168), and by the Strategic Environmental Research and Development Program (RC18-1322). J.D. is supported by grants from the Holsworth Wildlife Research Endowment & The Ecological Society of Australia, and a scholarship from China Scholarship Council (No. 201706040073). B.C. is supported by grants from the National Science Foundation (award DEB-1844531) and DePaul University. M.A.B. is supported by a grant from the National Science Foundation (award DEB-1638966). B.W. was supported by the Max Planck Society and a Paul Crutzen Nobel Laureate Fellowship. E.H.-S. was supported by CONACYT grant 251388 B. F.T.M. was supported by the European Research Council (ERC grant agreement 647038 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041)

    The Demographic Changes and Their Driving Forces on the Loess Plateau since 4000 Years BP

    No full text
    The intensity of human activities on the Loess Plateau (LP) could affect the ecological health and socioeconomic development of the area and the lower reaches of the Yellow River (YR). Population size/density is used as an important indicator to evaluate the intensity of human activities, but there has been little research on its variation in history. Therefore, this study provided a comprehensive analysis of the change characteristics, drivers and development stages of the population on the LP over the past 4000 years. We found that: (1) The significant increase in population after the Warring States (475–221 BC) was due to increasing cropland area and grain yield as a result of the development of agricultural technology compared to that before the Warring States, but its exponential increasing trend depended on reductions in procreation cost due to tax policies, in particular the abolition of the poll tax. (2) Peasant revolts and wars for power in each dynasty, and military conflicts on the boundary between the farming and pasture areas during the dry and cold period, led to population mortality and migration, causing the population of the LP to show a cyclical pattern of decline with the change in dynasties. (3) The population change of the LP has passed through four major stages: the sparsely populated period of primitive agriculture (2000–476 BC), the population fluctuation period of traditional agriculture (475 BC–1530 AD), the population growth period of traditional agriculture (1531–1949 AD) and the rapid population growth period of modern agriculture (1950–2000 AD)

    Integer Programming Scheduling Model for Tier-to-Tier Shuttle-Based Storage and Retrieval Systems

    No full text
    Shuttle-based storage and retrieval systems (SBS/RSs), a new type of “part-to-picker„ system, have attracted public attention because of their flexibility and robustness. The systems consist of two sub-systems—shuttles and lifts—which are responsible for horizontal movements and vertical movements, respectively. SBS/RSs are categorized into tier-to-tier shuttles and tier-captive shuttles. This paper mainly researches SBS/RSs with tier-to-tier shuttles. New challenges have emerged since the commercial simulation-based optimization software has become widely applied for, for instance, task scheduling problems. Specifically, to decrease the idle time of lifts and the waiting time of shuttles, an integer programming scheduling model is proposed to minimize total task time with constraints on orders and devices. The Gurobi linear programming solver was utilized to obtain the optimal order sequence and the shortest operation time. The overall system efficiency was improved using our model. Moreover, the results are significant for reducing capital investment and operating cost

    An efficient functional magnetic resonance imaging data reduction strategy using neighborhood preserving embedding algorithm

    No full text
    High dimensionality data have become common in neuroimaging fields, especially group-level functional magnetic resonance imaging (fMRI) datasets. fMRI connectivity analysis is a widely used, powerful technique for studying functional brain networks to probe underlying mechanisms of brain function and neuropsychological disorders. However, data-driven technique like independent components analysis (ICA), can yield unstable and inconsistent results, confounding the true effects of interest and hindering the understanding of brain functionality and connectivity. A key contributing factor to this instability is the information loss that occurs during fMRI data reduction. Data reduction of high dimensionality fMRI data in the temporal domain to identify the important information within group datasets is necessary for such analyses and is crucial to ensure the accuracy and stability of the outputs. In this study, we describe an fMRI data reduction strategy based on an adapted neighborhood preserving embedding (NPE) algorithm. Both simulated and real data results indicate that, compared with the widely used data reduction method, principal component analysis, the NPE-based data reduction method (a) shows superior performance on efficient data reduction, while enhancing group-level information, (b) develops a unique stratagem for selecting components based on an adjacency graph of eigenvectors, (c) generates more reliable and reproducible brain networks under different model orders when the outputs of NPE are used for ICA, (d) is more sensitive to revealing task-evoked activation for task fMRI, and (e) is extremely attractive and powerful for the increasingly popular fast fMRI and very large datasets.peerReviewe

    Matrix Metalloproteinase-9, A Potential Biological Marker in Invasive Pituitary Adenomas

    No full text
    Object We analyzed MMP-9 expression using mRNA and protein level determinations and explored the possibility that Matrix metalloproteinase-9 (MMP-9) is a potential biological marker of pituitary adenoma invasiveness and whether MMP-9 could be used to discriminate the extent of invasiveness among different hormonal subtypes, tumor sizes, growth characteristics, and primary versus recurrent tumors. Materials and methods 73 pituitary tumor specimens were snap frozen in liquid nitrogen immediately after surgical resection. RNA and protein were extracted. MMP-9 mRNA transcripts were analyzed by quantitative RT-PCR. MMP-9 protein activity was analyzed by gelatin zymography and validated by western blot analysis. Immunohistochemistry was performed to identify the presence and localization of MMP-9 in pituitary adenomas. Statistical differences between results were determined using Student’s t-test or one way ANOVA. Results Comparing different hormonal subtypes of noninvasive and invasive pituitary tumors, MMP-9 mRNAexpression was significantly increased in the majority of invasive adenomas. Considering the protein levels, our data also showed a significant increase in MMP-9 activity in the majority of invasive adenomas and these differences were confirmed by western blot analysis and immunohistochemistry. In addition, consistent differences in MMP-9expression levels were found according to tumor subtype, tumor size, tumor extension and primary versus redo-surgery. Conclusions MMP-9 expression can consistently distinguish invasive pituitary tumors from noninvasive pituitary tumors and would reflect the extent of invasiveness in pituitary tumors according to tumor subtype, size, tumor extension, primary and redo surgery, even at early stages of invasiveness. MMP-9 may be considered a potential biomarker to determine and predict the invasive nature of pituitary tumors

    Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death

    No full text
    Abstract Background Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. Methods C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Results Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. Conclusions These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs
    • 

    corecore