34 research outputs found

    Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation

    No full text
    Methanol is a promising fuel for direct methanol fuel cells in portable devices. A deeper understanding of its electro-oxidation is needed for evaluating electrocatalytic performance and catalyst design. Here we provide an in-depth investigation of the cyclic voltammetry (CV) of methanol electro-oxidation. The oxidation peak in backward scan is shown to be unrelated to residual intermediate oxidation. The origin of the second oxidation peak (I<sub>f2</sub>) is expected to the methanol oxidation on Pt–O<sub><i>x</i></sub>. Electrochemical impedance spectroscopy coupled with CV reveals the origin of CV hysteresis to be a shift in the rate-determining step, from methanol dehydration to OH adsorption by water dissociation, induced by a change in Pt surface coverage with oxygenated species. The peak ratio between forward oxidation peak current (I<sub>f</sub>) and backward oxidation peak current (I<sub>b</sub>), which is I<sub>f</sub>/I<sub>b</sub>, is not related to the degree of CO tolerance but to the degree of oxophilicity indeed

    Tailoring the Electronic Structure of Nanoelectrocatalysts Induced by a Surface-Capping Organic Molecule for the Oxygen Reduction Reaction

    No full text
    Capping organic molecules, including oleylamine, strongly adsorbed onto Pt nanoparticles during preparation steps are considered undesirable species for the oxygen reduction reaction due to decreasing electrochemical active sites. However, we found that a small amount of oleylamine modified platinum nanoparticles showed significant enhancement of the electrochemical activity of the oxygen reduction reaction, even with the loss of the electrochemically active surface area. The enhancement was correlated with the downshift of the frontier d-band structure of platinum and the retardation of competitively adsorbed species. These results suggest that a capping organic molecule modified electrode can be a strategy to design an advanced electrocatalyst by modification of electronic structures

    Rhodium–Tin Binary NanoparticleA Strategy to Develop an Alternative Electrocatalyst for Oxygen Reduction

    No full text
    A Rh–Sn nanoparticle is achieved by combinatorial approaches for application as an active and stable electrocatalyst in the oxygen reduction reaction. Both metallic Rh and metallic Sn exhibit activities too low to be utilized for electrocatalytic reduction of oxygen. However, a clean and active Rh surface can be activated by incorporation of Sn into a Rh nanoparticle through the combined effects of lateral repulsion, bifunctional mechanism, and electronic modification. The corrosion-resistant property of Rh contributes to the construction of a stable catalyst that can be used under harsh fuel cell conditions. Based on both theoretical and experimental research, Rh–Sn nanoparticle designs with inexpensive materials can be a potential alternative catalyst in terms of the economic feasibility of commercialization and its facile and simple surfactant-free microwave-assisted synthesis

    Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium–Sulfur Batteries

    No full text
    We first report on the copolymerization of sulfur and allyl-terminated poly­(3-hexylthiophene-2,5-diyl) (P3HT) derived by Grignard metathesis polymerization. This copolymerization is enabled by the conversion of sulfur radicals formed by thermolytic cleavage of S<sub>8</sub> rings with allyl end-group. The formation of a C–S bond in the copolymer is characterized by a variety of methods, including NMR spectroscopy, size exclusion chromatography, and near-edge X-ray absorption fine spectroscopy. The <b>S-P3HT</b> copolymer is applied as an additive to sulfur as cathode material in lithium–sulfur batteries and compared to the use of a simple mixture of sulfur and P3HT, in which sulfur and P3HT were not covalently linked. While P3HT is incompatible with elementary sulfur, the new <b>S-P3HT</b> copolymer can be well dispersed in sulfur, at least on the sub-micrometer level. Sulfur batteries containing the <b>S-P3HT</b> copolymer exhibit an enhanced battery performance with respect to the cycling performance at 0.5C (799 mAh g<sup>–1</sup> after 100 cycles for <b>S-P3HT</b> copolymer versus only 544 mAh g<sup>–1</sup> for the simple mixture) and the C-rate performance. This is attributed to the attractive interaction between polysulfides and P3HT hindering the dissolution of polysulfides and the charge transfer (proven by electrochemical impedance spectroscopy) due to the homogeneous incorporation of P3HT into sulfur by covalently linking sulfur and P3HT

    Next-Generation Polymer-Electrolyte-Membrane Fuel Cells Using Titanium Foam as Gas Diffusion Layer

    No full text
    In spite of their high conversion efficiency and no emission of greenhouse gases, polymer electrolyte membrane fuel cells (PEMFCs) suffer from prohibitively high cost and insufficient life-span of their core component system, the membrane electrode assembly (MEA). In this paper, we are proposing Ti foam as a promising alternative electrode material in the MEA. Indeed, it showed a current density of 462 mA cm<sup>–2</sup>, being ca. 166% higher than that with the baseline Toray 060 gas diffusion layer (GDL) (278 mA cm<sup>–2</sup>) with 200 ccm oxygen supply at 0.7 V, when used as the anode GDL, because of its unique three-dimensional strut structure promoting highly efficient catalytic reactions. Furthermore, it exhibits superior corrosion resistance with almost no thickness and weight changes in the accelerated corrosion test, as opposed to considerable reductions in the weight and thickness of the conventional GDL. We believe that this paper suggests profound implications in the commercialization of PEMFCs, because the metallic Ti foam provides a longer-term reliability and chemical stability, which can reduce the loss of Pt catalyst and, hence, the cost of PEMFCs

    Bioinspired Synthesis of Melaninlike Nanoparticles for Highly N‑Doped Carbons Utilized as Enhanced CO<sub>2</sub> Adsorbents and Efficient Oxygen Reduction Catalysts

    No full text
    Highly N-doped nanoporous carbons have been of great interest as a high uptake CO<sub>2</sub> adsorbent and as an efficient metal-free oxygen reduction reaction (ORR) catalyst. Therefore, it is essential to produce porosity-tunable and highly N-doped carbons through cost-effective means. Herein, we introduce the bioinspired synthesis of a monodisperse and N-enriched melaninlike polymer (MP) resembling the sepia biopolymer (SP) from oceanic cuttlefish. These polymers were subsequently utilized for highly N-doped synthetic carbon (MC) and biomass carbon (SC) spheres. An adequate CO<sub>2</sub> activation process fine-tunes the ultramicroporosity (<1 nm) of N-doped MC and SC spheres, those with maximum ultramicroporosities of which show remarkable CO<sub>2</sub> adsorption capacities. In addition, N-doped MC and SC with ultrahigh surface areas of 2677 and 2506 m<sup>2</sup>/g, respectively, showed excellent ORR activities with a favored four electron reduction pathway, long-term durability, and better methanol tolerance, comparable to a commercial Pt-based catalyst

    Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane

    No full text
    Here we show a simple and effective cross-linking method to prepare a high performance cross-linked sulfonated poly­(arylene ether sulfone) (C-SPAES) membrane using bishydroxy perfluoropolyether (PFPE) as a cross-linker for fuel cell applications. The C-SPAES membrane shows much improved physicochemical stability due to the cross-linked structure and reasonably high proton conductivity compared to the non-cross-linked SPAES membrane due to the incorporation of flexible PFPE and the effective phase-separated morphology between the hydrocarbon and perfluorinated moieties forming well-connected networks. Under intermediate-temperature and low humidity conditions (90 °C, 50% RH, and 150 kPa), the membrane electrode assembly employing the C-SPAES membrane reveals an outstanding cell performance (1.17 W cm<sup>–2</sup> at 0.65 V) ascribed to its reasonably high proton conductivity and enhanced interfacial compatibility between the perfluorinated moieties in the electrode and C-SPAES membrane. Furthermore, a hydration–dehydration cycling test result at 90 °C reveals that the C-SPAES membrane has notable durability against rigorous operating conditions

    Conformal Polymeric Multilayer Coatings on Sulfur Cathodes via the Layer-by-Layer Deposition for High Capacity Retention in Li–S Batteries

    No full text
    We report on the conformal coating of thickness-tunable multilayers directly onto the sulfur (S<sub>8</sub>) cathodes by the layer-by-layer (LbL) deposition for the significant improvement in the performances of Li–S batteries even without key additives (LiNO<sub>3</sub>) in the electrolyte. Poly­(ethylene oxide) (PEO)/poly­(acrylic acid) (PAA) multilayers on a single poly­(allylamine hydrochloride) (PAH)/PAA priming bilayer, deposited on the S<sub>8</sub> cathodes, effectively protected from the polysulfide leakage, while providing a Li<sup>+</sup> ion diffusion channel. As a result, PAH/PAA/(PEO/PAA)<sub>3</sub> multilayer-coated cathodes exhibited the highest capacity retention (806 mAh g<sup>–1</sup>) after 100 cycles at 0.5 C, as well as the high C-rate capability up to 2.0 C. Furthermore, the multilayer coating effectively mitigated the polysulfide shuttle effect in the absent of LiNO<sub>3</sub> additives in the electrolyte

    Origin of the Enhanced Electrocatalysis for Thermally Controlled Nanostructure of Bimetallic Nanoparticles

    No full text
    The thermal annealing process is a common treatment used after the preparation step to enhance the electrocatalytic properties of the oxygen reduction reaction (ORR). The structure of a Pt-based bimetallic nanoparticle, which is significantly affected by the catalytic properties, is reconstructed by thermal energy. We investigated the effect of structural reconstruction induced by thermal annealing on the improvement of the ORR using various physical and electrochemical methods. We found that the structural evolution of PtNi nanoparticles, i.e., the Pt–Ni ordering with the Pt shell and the surface reorientation into the (111) facet, is the source of the enhanced ORR activity as well as electrochemical stability through the thermal annealing. This result confirms the crucial factors for the ORR properties by the thermal annealing process and proposes a way to design advanced electrocatalysts

    Na<sup>+</sup>/Vacancy Disordered P2-Na<sub>0.67</sub>Co<sub>1–<i>x</i></sub>Ti<i><sub>x</sub></i>O<sub>2</sub>: High-Energy and High-Power Cathode Materials for Sodium Ion Batteries

    No full text
    Although sodium ion batteries (NIBs) have gained wide interest, their poor energy density poses a serious challenge for their practical applications. Therefore, high-energy-density cathode materials are required for NIBs to enable the utilization of a large amount of reversible Na ions. This study presents a P2-type Na<sub>0.67</sub>Co<sub>1–<i>x</i></sub>Ti<i><sub>x</sub></i>O<sub>2</sub> (<i>x</i> < 0.2) cathode with an extended potential range higher than 4.4 V to present a high specific capacity of 166 mAh g<sup>–1</sup>. A group of P2-type cathodes containing various amounts of Ti is prepared using a facile synthetic method. These cathodes show different behaviors of the Na<sup>+</sup>/vacancy ordering. Na<sub>0.67</sub>CoO<sub>2</sub> suffers severe capacity loss at high voltages due to irreversible structure changes causing serious polarization, while the Ti-substituted cathodes have long credible cycleability as well as high energy. In particular, Na<sub>0.67</sub>Co<sub>0.90</sub>Ti<sub>0.10</sub>O<sub>2</sub> exhibits excellent capacity retention (115 mAh g<sup>–1</sup>) even after 100 cycles, whereas Na<sub>0.67</sub>CoO<sub>2</sub> exhibits negligible capacity retention (<10 mAh g<sup>–1</sup>) at 4.5 V cutoff conditions. Na<sub>0.67</sub>Co<sub>0.90</sub>Ti<sub>0.10</sub>O<sub>2</sub> also exhibits outstanding rate capabilities of 108 mAh g<sup>–1</sup> at a current density of 1000 mA g<sup>–1</sup> (7.4 C). Increased sodium diffusion kinetics from mitigated Na<sup>+</sup>/vacancy ordering, which allows high Na<sup>+</sup> utilization, are investigated to find in detail the mechanism of the improvement by combining systematic analyses comprising TEM, in situ XRD, and electrochemical methods
    corecore