156 research outputs found
A binary mixture of spinor atomic Bose-Einstein condensates
We study the ground state and classify its phase diagram for a mixture of two
spin-1 condensates in the absence of external magnetic (B-) field according to
atomic parameters for intra- and inter-species spin exchange coupling and
singlet pairing interaction. Ignoring the inter-species singlet pairing
interaction, the ground state phases are found analytically. Numerical approach
of simulated annealing is adopted when the singlet pairing interaction is
present. Our results on the phase diagram and the boundaries between phases
allow for easy identifications of quantum phase transitions, that can be
induced through the tuning of optical traps and atom numbers. They provide the
first insight and guidance for several ongoing experiments on mixtures of
spinor condensates.Comment: 5 pages, 4 figure
Deriving N-soliton solutions via constrained flows
The soliton equations can be factorized by two commuting x- and t-constrained
flows. We propose a method to derive N-soliton solutions of soliton equations
directly from the x- and t-constrained flows.Comment: 8 pages, AmsTex, no figures, to be published in Journal of Physics
Constructing N-soliton solution for the mKdV equation through constrained flows
Based on the factorization of soliton equations into two commuting integrable
x- and t-constrained flows, we derive N-soliton solutions for mKdV equation via
its x- and t-constrained flows. It shows that soliton solution for soliton
equations can be constructed directly from the constrained flows.Comment: 10 pages, Latex, to be published in "J. Phys. A: Math. Gen.
Quantum states of a binary mixture of spinor Bose-Einstein condensates
We study the structure of quantum states for a binary mixture of spin-1
atomic Bose-Einstein condensates. In contrast to collision between identical
bosons, the s-wave scattering channel between inter-species does not conform to
a fixed symmetry. The spin-dependent Hamiltonian thus contains non-commuting
terms, making the exact eigenstates more challenging to obtain because they now
depend more generally on both the intra- and inter-species interactions. We
discuss two limiting cases, where the spin-dependent Hamiltonian reduces
respectively to sums of commuting operators. All eigenstates can then be
directly constructed, and they are independent of the detailed interaction
parameters.Comment: 5 pages, no figure
Atomic number fluctuations in a mixture of two spinor condensates
We study particle number fluctuations in the quantum ground states of a
mixture of two spin-1 atomic condensates when the interspecies spin-exchange
coupling interaction is adjusted. The two spin-1 condensates
forming the mixture are respectively ferromagnetic and polar in the absence of
an external magnetic (B-) field. We categorize all possible ground states using
the angular momentum algebra and compute their characteristic atom number
fluctuations, focusing especially on the the AA phase (when ),
where the ground state becomes fragmented and atomic number fluctuations
exhibit drastically different features from a single stand alone spin-1 polar
condensate. Our results are further supported by numerical simulations of the
full quantum many-body system.Comment: 5 pages, 2 figures, in press PR
The stability and free expansion of a dipolar Fermi gas
We investigate the stability and the free expansion of a trapped dipolar
Fermi gas. We show that stabilizing the system relying on tuning the trap
geometry is generally inefficient. We further show that the expanded density
profile always gets stretched along the attractive direction of dipolar
interaction. We also point out that by switching off the dipolar interaction
simultaneously with the trapping potential, the deformation of momentum
distribution can be directly observed.Comment: 5 pages, 5 figure
Macroscopic quantum coherence in spinor condensates confined in an anisotropic potential
We investigate the macroscopic quantum coherence of a spin-1 Rb condensate
confined in an anisotropic potential. Under the single-mode approximation, we
show that the system can be modeled as a biaxial quantum magnet due to the
interplay between the magnetic dipole-dipole interaction and the anisotropic
potential. By applying a magnetic field along the hard-axis, we show that the
tunneling splitting oscillates as a function of the field strength. We also
propose an experimental scheme to detect the oscillatory behavior of the
tunneling splitting by employing the Landau-Zener tunneling.Comment: 5 pages, 4 figure
Integrable dispersionless KdV hierarchy with sources
An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived.
Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated.
Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is
obtained via hodograph transformation. Furthermore, the dispersionless
Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge
Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.
Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair
B\"{a}cklund transformations for the constrained dispersionless hierarchies and dispersionless hierarchies with self-consistent sources
The B\"{a}cklund transformations between the constrained dispersionless KP
hierarchy (cdKPH) and the constrained dispersionless mKP hieararchy (cdmKPH)
and between the dispersionless KP hieararchy with self-consistent sources
(dKPHSCS) and the dispersionless mKP hieararchy with self-consistent sources
(dmKPHSCS) are constructed. The auto-B\"{a}cklund transformations for the
cdmKPH and for the dmKPHSCS are also formulated.Comment: 11 page
- …