156 research outputs found

    A binary mixture of spinor atomic Bose-Einstein condensates

    Full text link
    We study the ground state and classify its phase diagram for a mixture of two spin-1 condensates in the absence of external magnetic (B-) field according to atomic parameters for intra- and inter-species spin exchange coupling and singlet pairing interaction. Ignoring the inter-species singlet pairing interaction, the ground state phases are found analytically. Numerical approach of simulated annealing is adopted when the singlet pairing interaction is present. Our results on the phase diagram and the boundaries between phases allow for easy identifications of quantum phase transitions, that can be induced through the tuning of optical traps and atom numbers. They provide the first insight and guidance for several ongoing experiments on mixtures of spinor condensates.Comment: 5 pages, 4 figure

    Deriving N-soliton solutions via constrained flows

    Full text link
    The soliton equations can be factorized by two commuting x- and t-constrained flows. We propose a method to derive N-soliton solutions of soliton equations directly from the x- and t-constrained flows.Comment: 8 pages, AmsTex, no figures, to be published in Journal of Physics

    Constructing N-soliton solution for the mKdV equation through constrained flows

    Full text link
    Based on the factorization of soliton equations into two commuting integrable x- and t-constrained flows, we derive N-soliton solutions for mKdV equation via its x- and t-constrained flows. It shows that soliton solution for soliton equations can be constructed directly from the constrained flows.Comment: 10 pages, Latex, to be published in "J. Phys. A: Math. Gen.

    Quantum states of a binary mixture of spinor Bose-Einstein condensates

    Full text link
    We study the structure of quantum states for a binary mixture of spin-1 atomic Bose-Einstein condensates. In contrast to collision between identical bosons, the s-wave scattering channel between inter-species does not conform to a fixed symmetry. The spin-dependent Hamiltonian thus contains non-commuting terms, making the exact eigenstates more challenging to obtain because they now depend more generally on both the intra- and inter-species interactions. We discuss two limiting cases, where the spin-dependent Hamiltonian reduces respectively to sums of commuting operators. All eigenstates can then be directly constructed, and they are independent of the detailed interaction parameters.Comment: 5 pages, no figure

    Atomic number fluctuations in a mixture of two spinor condensates

    Full text link
    We study particle number fluctuations in the quantum ground states of a mixture of two spin-1 atomic condensates when the interspecies spin-exchange coupling interaction c12βc_{12}\beta is adjusted. The two spin-1 condensates forming the mixture are respectively ferromagnetic and polar in the absence of an external magnetic (B-) field. We categorize all possible ground states using the angular momentum algebra and compute their characteristic atom number fluctuations, focusing especially on the the AA phase (when c12β>0 c_{12}\beta >0), where the ground state becomes fragmented and atomic number fluctuations exhibit drastically different features from a single stand alone spin-1 polar condensate. Our results are further supported by numerical simulations of the full quantum many-body system.Comment: 5 pages, 2 figures, in press PR

    The stability and free expansion of a dipolar Fermi gas

    Full text link
    We investigate the stability and the free expansion of a trapped dipolar Fermi gas. We show that stabilizing the system relying on tuning the trap geometry is generally inefficient. We further show that the expanded density profile always gets stretched along the attractive direction of dipolar interaction. We also point out that by switching off the dipolar interaction simultaneously with the trapping potential, the deformation of momentum distribution can be directly observed.Comment: 5 pages, 5 figure

    Macroscopic quantum coherence in spinor condensates confined in an anisotropic potential

    Full text link
    We investigate the macroscopic quantum coherence of a spin-1 Rb condensate confined in an anisotropic potential. Under the single-mode approximation, we show that the system can be modeled as a biaxial quantum magnet due to the interplay between the magnetic dipole-dipole interaction and the anisotropic potential. By applying a magnetic field along the hard-axis, we show that the tunneling splitting oscillates as a function of the field strength. We also propose an experimental scheme to detect the oscillatory behavior of the tunneling splitting by employing the Landau-Zener tunneling.Comment: 5 pages, 4 figure

    Integrable dispersionless KdV hierarchy with sources

    Full text link
    An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge

    Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.

    Get PDF
    Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair

    B\"{a}cklund transformations for the constrained dispersionless hierarchies and dispersionless hierarchies with self-consistent sources

    Full text link
    The B\"{a}cklund transformations between the constrained dispersionless KP hierarchy (cdKPH) and the constrained dispersionless mKP hieararchy (cdmKPH) and between the dispersionless KP hieararchy with self-consistent sources (dKPHSCS) and the dispersionless mKP hieararchy with self-consistent sources (dmKPHSCS) are constructed. The auto-B\"{a}cklund transformations for the cdmKPH and for the dmKPHSCS are also formulated.Comment: 11 page
    corecore