We study particle number fluctuations in the quantum ground states of a
mixture of two spin-1 atomic condensates when the interspecies spin-exchange
coupling interaction c12β is adjusted. The two spin-1 condensates
forming the mixture are respectively ferromagnetic and polar in the absence of
an external magnetic (B-) field. We categorize all possible ground states using
the angular momentum algebra and compute their characteristic atom number
fluctuations, focusing especially on the the AA phase (when c12β>0),
where the ground state becomes fragmented and atomic number fluctuations
exhibit drastically different features from a single stand alone spin-1 polar
condensate. Our results are further supported by numerical simulations of the
full quantum many-body system.Comment: 5 pages, 2 figures, in press PR