86 research outputs found

    Absolute and relative POD of LEO satellites in formation flying: Undifferenced and uncombined approach

    Get PDF
    Absolute or relative precise orbit determination (POD) is an essential prerequisite for many low earth orbit (LEO) missions. The POD of LEO satellites typically relays on processing the onboard global navigation satellite system (GNSS) measurements. The absolute POD is usually based on an ionosphere-free (IF) combination, and currently, integer ambiguity resolution (IAR) can be achieved only when external GNSS satellite phase bias (SPB) products are used. The use of these products is not flexible in multi-frequency/multi-constellation scenarios and is difficult to achieve in real-time missions. For relative POD, the double-differenced (DD) with IAR is the most general method. However, the differencing process amplifies observation noise and loses the opportunity to impose dynamic constraints on some eliminated parameters. In this contribution, based on the use of undifferenced and uncombined (UDUC) observations, a new model for both absolute and relative POD is proposed. In this model, the ambiguities of common-view satellites are constructed into DD form, thus IAR can be achieved without any external SPB products. Working with the UDUC observations, multi-frequency scenarios can be easily applied, and residuals can be separated for each frequency. In addition, with precise GNSS satellite clock/orbit products, both the absolute and relative orbits can be derived, which supports absolute and relative LEO POD. Based on onboard GPS observations of T-A and T-B satellites in formation flying, the performance of the UDUC POD model with DD ambiguity was evaluated. With the UDUC algorithm and IAR, the proposed model presented a consistency of 2.8–3.8 cm in 3D with the reference orbits, and the orbit difference was reduced by 16.3% and 10.6% for T-A and T-B compared with the IF-based POD, respectively. In addition, the relative orbit of the two satellites derived from the proposed model showed a consistency of 1.1–1.5 mm, which proved the feasibility of the UDUC POD model with DD ambiguity for formation flying missions

    An Evaluaton of Real-Time Troposphere Products Based on mult-GNSS Precise Point Posi)oning

    Get PDF
    When employing observations from multiple Global Navigation Satellite System (GNSS) the performance of real-time (RT) GNSS meteorology can be improved. In this paper, we describe an operational RT system for extracting zenith tropospheric delay (ZTD) using a modified version of the PPP-wizard. Multi-GNSS, including GPS, GLONASS and Galileo, observation streams are processed using a RT PPP strategy based on RT satellite orbit/clock products from CNES. A continuous experiment for 30 days is conducted, in which the RT observation streams of 20 globally distributed stations are processed. The initialization time and accuracy of the RT troposphere products using single/multi-system observations are evaluated. The effect of RT PPP ambiguity resolution is also evaluated. The results reveal that the RT troposphere products based on single system observations can fulfill the requirements of meteorological application, in which the GPS-only solution is better than the GLONASS-only solution in both initialization and accuracy. The performance can also be improved by applying RT PPP ambiguity resolution and utilizing multi-GNSS observations. Specifically, we notice that the ambiguity resolution is more effective in improving the accuracy, whereas the initialization process can be better accelerated by multi-GNSS observations. Combining all systems, RT troposphere products with an average accuracy of about 8 mm in ZTD can be achieved after an initialization process of approximately 9 minutes, which supports the application of multi-GNSS observations and ambiguity resolution for RT meteorological applications

    Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

    Get PDF
    In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers (IAAC) have developed different techniques to provide Global Ionospheric Maps (GIMs) of Vertical Total Electron Content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, UWH). To assess the qual- ity of them in fair and completely independent ways, two assessment meth- ods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations

    Estimation and Analysis of BDS2 and BDS3 Differential Code Biases and Global Ionospheric Maps Using BDS Observations

    No full text
    Following the continuous and stable regional service of BDS2, the BDS3 officially announced its global service in July 2020. To fully take advantage of the new multi-frequency BDS3 signals in ionosphere sensing and positioning, it is essential to understand the characteristics of the differential code bias (DCB) of new BDS3 signals and BDS performance in global ionospheric maps (GIMs) estimation. This article presents an evaluation of the characteristics of 13 types of BDS DCBs and the accuracy of BDS-based GIM based on the data provided by the International GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS) for the first time. The GIMs and DCBs are estimated by the APM (Innovation Academy for Precision Measurement Science and Technology) method in a time efficient manner, which can be divided into two main steps. The first step is to produce GIMs based on BDS observations at the B1I, B2I and B3I signals, and the second step is to estimate DCBs among the other frequency bands by removing the ionospheric delay using the precomputed GIMs. Good agreement is found between the APM-based satellite DCB estimates and those from the Chinese Academy of Sciences (CAS) and the German Aerospace Center (DLR) at levels of 0.26 ns and 0.18 ns, respectively. The results, spanning one month, show that the stability of BDS DCB estimates among different frequency bands are related to the contributed observations, and the receiver DCB estimates represent larger STD values than the satellite DCB estimates. The differences in receiver DCB estimates between BDS2 and BDS3 are found to be related to the types of receivers and antennas and firmware version, and the bias of the JAVAD receivers reaches 1.03 ns. The results also indicate that the difference in the single-frequency standpoint positioning (SPP) accuracy using GPS-based and BDS-based GIMs for ionospheric delay corrections is less than 0.03 m in both the horizontal and vertical directions

    Estimation and Analysis of the Observable-Specific Code Biases Estimated Using Multi-GNSS Observations and Global Ionospheric Maps

    No full text
    Observable-specific bias (OSB) parameterization allows observation biases belonging to various signal types to be flexibly addressed in the estimation of ionosphere and global navigation satellite system (GNSS) clock products. In this contribution, multi-GNSS OSBs are generated by two different methods. With regard to the first method, geometry-free (GF) linear combinations of the pseudorange and carrier-phase observations of a global multi-GNSS receiver network are formed for the extraction of OSB observables, and global ionospheric maps (GIMs) are employed to correct ionospheric path delays. Concerning the second method, satellite and receiver OSBs are converted directly from external differential code bias (DCB) products. Two assumptions are employed in the two methods to distinguish satellite- and receiver-specific OSB parameters. The first assumption is a zero-mean condition for each satellite OSB type and GNSS signal. The second assumption involves ionosphere-free (IF) linear combination signal constraints for satellites and receivers between two signals, which are compatible with the International GNSS Service (IGS) clock product. Agreement between the multi-GNSS satellite OSBs estimated by the two methods and those from the Chinese Academy of Sciences (CAS) is shown at levels of 0.15 ns and 0.1 ns, respectively. The results from observations spanning 6 months show that the multi-GNSS OSB estimates for signals in the same frequency bands may have very similar code bias characteristics, and the receiver OSB estimates present larger standard deviations (STDs) than the satellite OSB estimates. Additionally, the variations in the receiver OSB estimates are shown to be related to the types of receivers and antennas and the firmware version. The results also indicate that the root mean square (RMS) of the differences between the OSBs estimated based on the CAS- and German Aerospace Center (DLR)-provided DCB products are 0.32 ns for the global positioning system (GPS), 0.45 ns for the BeiDou navigation satellite system (BDS), 0.39 ns for GLONASS and 0.22 ns for Galileo

    A Method of Vision Aided GNSS Positioning Using Semantic Information in Complex Urban Environment

    No full text
    High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments

    A Method to Accelerate the Convergence of Satellite Clock Offset Estimation Considering the Time-Varying Code Biases

    No full text
    Continuous and stable precision satellite clock offsets are an important guarantee for real-time precise point positioning (PPP). However, in real-time PPP, the estimation of a satellite clock is often interrupted for various reasons such as network fluctuations, which leads to a long time for clocks to converge again. Typically, code biases are assumed to stay constant over time in clock estimation according to the current literature. In this contribution, it is shown that this assumption reduces the convergence speed of estimation, and the satellite clocks are still unstable for several hours after convergence. For this reason, we study the influence of different code bias extraction schemes, that is, taking code biases as constants, extracting satellite code biases (SCBs), extracting receiver code biases (RCBs) and simultaneously extracting SCBs and RCBs, on satellite clock estimation. Results show that, the time-varying SCBs are the main factors leading to the instability of satellite clocks, and considering SCBs in the estimation can significantly accelerate the filter convergence and improve the stability of clocks. Then, the products generated by introducing SCBs in the clock estimation based on undifferenced observations are applied to PPP experiments. Compared with the original undifferenced model, clocks estimated using the new method can significantly accelerate the convergence speed of PPP and improve the positioning accuracy, which illustrates that our estimated clocks are effective and superior

    Estimation and Analysis of BDS2 and BDS3 Differential Code Biases and Global Ionospheric Maps Using BDS Observations

    No full text
    Following the continuous and stable regional service of BDS2, the BDS3 officially announced its global service in July 2020. To fully take advantage of the new multi-frequency BDS3 signals in ionosphere sensing and positioning, it is essential to understand the characteristics of the differential code bias (DCB) of new BDS3 signals and BDS performance in global ionospheric maps (GIMs) estimation. This article presents an evaluation of the characteristics of 13 types of BDS DCBs and the accuracy of BDS-based GIM based on the data provided by the International GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS) for the first time. The GIMs and DCBs are estimated by the APM (Innovation Academy for Precision Measurement Science and Technology) method in a time efficient manner, which can be divided into two main steps. The first step is to produce GIMs based on BDS observations at the B1I, B2I and B3I signals, and the second step is to estimate DCBs among the other frequency bands by removing the ionospheric delay using the precomputed GIMs. Good agreement is found between the APM-based satellite DCB estimates and those from the Chinese Academy of Sciences (CAS) and the German Aerospace Center (DLR) at levels of 0.26 ns and 0.18 ns, respectively. The results, spanning one month, show that the stability of BDS DCB estimates among different frequency bands are related to the contributed observations, and the receiver DCB estimates represent larger STD values than the satellite DCB estimates. The differences in receiver DCB estimates between BDS2 and BDS3 are found to be related to the types of receivers and antennas and firmware version, and the bias of the JAVAD receivers reaches 1.03 ns. The results also indicate that the difference in the single-frequency standpoint positioning (SPP) accuracy using GPS-based and BDS-based GIMs for ionospheric delay corrections is less than 0.03 m in both the horizontal and vertical directions

    Analysis of Precise Orbit Determination of BDS-3 MEO and IGSO Satellites Based on Several Dual-Frequency Measurement Combinations

    No full text
    The Chinese BeiDou-3 navigation satellite system (BDS-3) is capable of transmitting both old B1I, B3I signals and new B1C, B2a, B2b signals. Current BDS-3 precise orbits are generally calculated using a B1I/B3I combination considering overlap with the BeiDou-2 navigation satellite system (BDS-2). In this contribution, the observation quality of BDS-3 medium earth orbit (MEO) satellites and inclined geosynchronous orbit (IGSO) satellites are analyzed based on three aspects, i.e., carrier to noise ratio (C/N0), pseudo-range noise and pseudo-range multipath (MP). The C/N0 of the MEO satellite is 2~3 dB higher than that of the IGSO satellite at the same elevation angle. Meanwhile, the order of the Root Mean Square (RMS) values of both pseudo-range noise and MP is B1I < B1C < B3I < B2a ≈ B2b. Three kinds of combinations, i.e., B1CB2a, B1CB2b and B1IB3I, are selected for the BDS-3 precise orbit determination (POD) experiment. Orbits are assessed by the orbit-only signal-in-space range error (SISRE) computed between pairs of the three kinds of combinations in this contribution, CODE and GFZ final orbits. Orbit-only SISRE assessment shows that B1CB2a/CODE, B1CB2b/CODE, B1CB2a/GFZ and B1CB2b/GFZ are at the same level with CODE/GFZ, and the orbit-only SISRE is at the level of 5 cm for MEOs and 9 cm for IGSOs, respectively. Meanwhile, B1IB3I/CODE and B1IB3I/GFZ are about 1–2 cm worse. Inter-solution comparison between B1CB2a, B1CB2b and B1IB3I also indicate that B1CB2a and B1CB2b have good consistency, while B1IB3I shows poor performance. Satellite laser ranging (SLR) residuals indicate that the mean RMS is 3–4 cm for the four BDS-3 MEOs for CODE final orbit, GFZ final orbit, B1CB2a and B1CB2b combinations, while the mean RMS value for B1IB3I combination is a few millimeters worse, at approximately 4–5 cm
    • …
    corecore