25 research outputs found

    Comparisons of population density and genetic diversity in artificial and wild populations of an arborescent coral, Acropora yongei: implications for the efficacy of “artificial spawning hotspots”

    Get PDF
    We are developing techniques to restore coral populations by enhancing larval supply using artificial spawning hotspots that aggregate conspecific adult corals. However, no data were available regarding how natural larval supply from wild coral populations is influenced by fertilization rate and how this is in turn affected by local population density and genetic diversity. Therefore, we assessed population density and genetic diversity of a wild, arborescent coral, Acropora yongei, and compared these parameters with those of an artificially established A. yongei population in the field. The population density of wild arborescent corals was only 0.27% of that in the artificial population, even in a high-coverage area. Genetic diversity was also low in the wild population compared with the artificial population, and approximately 10% of all wild colonies were clones. Based on these results, the larval supply in the artificial population was estimated to be at least 1,400 times higher than that in wild A. yongei populations for the same area of adult population

    Transcriptome Analyses of Immune System Behaviors in Primary Polyp of Coral Acropora digitifera Exposed to the Bacterial Pathogen Vibrio coralliilyticus under Thermal Loading

    Get PDF
    Elevated sea surface temperature associated with global warming is a serious threat to coral reefs. Elevated temperatures directly or indirectly alter the distribution of coral-pathogen interactions and thereby exacerbate infectious coral diseases. The pathogenic bacterium Vibrio coralliilyticus is well-known as a causative agent of infectious coral disease. Rising sea surface temperature promotes the infection of corals by this bacterium, which causes several coral pathologies, such as bacterial bleaching, tissue lysis, and white syndrome. However, the effects of thermal stress on coral immune responses to the pathogen are poorly understood. To delineate the effects of thermal stress on coral immunity, we performed transcriptome analysis of aposymbiotic primary polyps of the reef-building coral Acropora digitifera exposed to V. coralliilyticus under thermal stress conditions. V. coralliilyticus infection of coral that was under thermal stress had negative effects on various molecular processes, including suppression of gene expression related to the innate immune response. In response to the pathogen, the coral mounted various responses including changes in protein metabolism, exosome release delivering signal molecules, extracellular matrix remodeling, and mitochondrial metabolism changes. Based on these results, we provide new insights into innate immunity of A. digitifera against pathogen infection under thermal stress conditions

    Microsatellite markers for multiple Pocillopora genetic lineages offer new insights about coral populations

    Get PDF
    Population genetics of the coral genus Pocillopora have been more intensively studied than those of any other reef-building taxon. However, recent investigations have revealed that the current morphological classification is inadequate to represent genetic lineages. In this study, we isolated and characterized novel microsatellite loci from morphological Pocillopora meandrina (Type 1) and Pocillopora acuta (Type 5). Furthermore, we characterized previously reported microsatellite loci. A total of 27 loci (13 novel loci) proved useful for population genetic analyses at two sites in the Ryukyu Archipelago, in the northwestern Pacific. Clonal diversity differed in each genetic lineage. Genetic structure suggested by microsatellites corresponded to clusters in a phylogenetic tree constructed from a mitochondrial open reading frame (mtORF). In addition, we found an unknown mitochondrial haplotype of this mtORF. These microsatellite loci will be useful for studies of connectivity and genetic diversity of Pocillopora populations, and will also support coral reef conservation

    Whole-Genome Transcriptome Analyses of Native Symbionts Reveal Host Coral Genomic Novelties for Establishing Coral–Algae Symbioses

    Get PDF
    Reef-building corals and photosynthetic, endosymbiotic algae of the family Symbiodiniaceae establish mutualistic relationships that are fundamental to coral biology, enabling coral reefs to support a vast diversity of marine species. Although numerous types of Symbiodiniaceae occur in coral reef environments, Acropora corals select specific types in early life stages. In order to study molecular mechanisms of coral–algal symbioses occurring in nature, we performed whole-genome transcriptomic analyses of Acropora tenuis larvae inoculated with Symbiodinium microadriaticum strains isolated from an Acropora recruit. In order to identify genes specifically involved in symbioses with native symbionts in early life stages, we also investigated transcriptomic responses of Acropora larvae exposed to closely related, nonsymbiotic, and occasionally symbiotic Symbiodinium strains. We found that the number of differentially expressed genes was largest when larvae acquired native symbionts. Repertoires of differentially expressed genes indicated that corals reduced amino acid, sugar, and lipid metabolism, such that metabolic enzymes performing these functions were derived primarily from S. microadriaticum rather than from A. tenuis. Upregulated gene expression of transporters for those metabolites occurred only when coral larvae acquired their natural symbionts, suggesting active utilization of native symbionts by host corals. We also discovered that in Acropora, genes for sugar and amino acid transporters, prosaposin-like, and Notch ligand-like, were upregulated only in response to native symbionts, and included tandemly duplicated genes. Gene duplications in coral genomes may have been essential to establish genomic novelties for coral–algae symbiosis

    Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes

    Get PDF
    The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures

    Genome‐wide SNP genotyping reveals hidden population structure of an acroporid species at a subtropical coral island: Implications for coral restoration

    Get PDF
    1. It is essential to consider genetic composition for both conventional coral restoration management and for initiating new interventions to counter the significant global decline in living corals. Population genetic structure at a fine spatial scale should be carefully evaluated before implementing strategies to achieve self-sustaining ecosystems via coral restoration. 2. This study investigated the population genetic structure of two acroporid species at Kume Island, Okinawa, Japan. There were 140 colonies of Acropora digitifera collected from seven study sites, and 81 colonies of Acropora tenuis from six sites. In total, 384 single nucleotide polymorphism (SNP) loci for A. digitifera and 470 SNPs for A. tenuis were obtained using a comparatively economical technique, Multiplexed ISSR Genotyping by sequencing. 3. Observed heterozygosity was significantly lower than expected heterozygosity at all SNP sites in both acroporid species, suggesting deficient genetic diversity possibly caused by past massive coral bleaching. Even though both species are broadcast spawners, the population structure was different in the two species. No detectable structure was evident in A. digitifera, but two distinct clades were found in A. tenuis. The genetic homogeneity of A. digitifera at Kume Island suggests that this species could be used as a focal species for active restoration in terms of genetic differentiation at this island. By contrast, A. tenuis unexpectedly included two distinct clades with little or no admixture within a small study area, possibly representing two reproductively isolated cryptic species. Thus, when using A. tenuis, it would be prudent to avoid disturbing the genetic composition of wild populations until this question is answered.journal articl

    Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes

    Get PDF
    Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral

    塊状サンゴと共生するサンゴヤドリガニ間に見られる共種分化

    Get PDF
    京都大学0048新制・課程博士博士(理学)甲第18105号理博第3983号新制||理||1574(附属図書館)30963京都大学大学院理学研究科生物科学専攻(主査)教授 朝倉 彰, 講師 宮崎 勝己, 教授 疋田 努学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDGA
    corecore