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Abstract

The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs,
the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of
Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa
belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success.
We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora
ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversi-
fication of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire
is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in
Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation
and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired
by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores,
suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine
environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-
related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results
suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to
adjust to rising seawater temperatures.

Key words: genome sequencing, gene duplicatoin, scleractinian corals, environment.

Introduction coral reefs also destroys the habitats of diverse marine species,
making extensive loss of reef habitats one of the most press-
ing environmental issues of our time.

The genus Acropora (Family Acroporidae) is a keystone
reef taxon globally, distributed from the Red Sea through the
Indo-Pacific Ocean to the Caribbean. It is also the most di-
verse and abundant taxon, with more than 100 described
species (Wallace 1999). The high growth rate of Acropora
corals contributes significantly to reef growth, island forma-
tion, coastal protection, and support for fisheries (Shinn 1966;
Bruckner 2002). The complex, 3D structures of Acropora cor-
als provide habitat and refuge for more than a million species
of marine organisms (Hinrichsen 1997; Knowlton et al. 2010).
Acropora species are highly susceptible to coral bleaching

Coral reefs support the most diverse marine ecosystems on
Earth (Wilkinson 2008). Coral reef structure depends upon
calcium carbonate deposition by anthozoan cnidarians
known as scleractinian corals. Corals form obligate endosym-
bioses with photosynthetic dinoflagellates of the family
Symbiodiniaceae, which supply the vast majority of their pho-
tosynthetic products to the host corals (Yellowlees et al.
2008). However, corals face a range of anthropogenic chal-
lenges, including ocean acidification and increasing seawater
temperatures (Hoegh-Guldberg et al. 2007). Tropical storms,
predation by crown-of-thorns starfish, and coral bleaching, a
breakdown of the mutualism between corals and their sym-
biotic dinoflagellates caused by high ocean temperatures, are

major causes of coral reef decline (De‘ath et al. 2012). induced by increasing seawater temperatures (Marshall
Bleaching has been observed around the world with increas- and Baird 2000; Loya et al. 2007; Hughes et al 2018);
ing frequency (Hughes et al. 2017; Nakamura 2017). Loss of hence, they are expected to decline in the near future
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(Alvarez-Filip et al. 2013). Due to their bleaching susceptibility,
more than 70% of acroporid species are listed as near threat-
ened or threatened in the International Union for
Conservation of Nature Red List (Carpenter et al. 2008).
The evolutionary history of Acropora is complex, with
gaps in molecular data and fossil records. Although a mo-
lecular phylogenetic analysis using mitochondrial genes
suggested that modern diversification of Acropora from a
single Pliocene ancestor probably occurred after the
Miocene, around 2 Ma (Fukami et al. 2000), recent molec-
ular phylogenetic analysis using nuclear and mitochondrial
genes suggested that divergence of Acropora started
around 34 Ma (Richards et al. 2013). Despite its bleaching
susceptibility, the first appearances of Acropora in the fossil
record are from Somalia (Carbone et al. 1993) and Austria
(Baron-Szabo 2006) during the Paleocene (66 Ma), a
warmer period than the present, in which there was no
sea ice. An Acropora-dominated fossil assemblage is first
seen in the Oligocene of Greece (Schuster 2000). It has
been reported that 12 extant species were already present
in the Indo-Pacific in the Early Miocene, suggesting that
speciation and diversification of Acropora occurred
throughout the Cenozoic, in different world regions, in-
cluding the Indo-Pacific (Santodomingo et al. 2015). In
addition to Acropora fossil records from the Paleogene
period (Paleocene, Eocene, and Oligocene), the presence
of Acropora corals in seasonal warm water environments
(the Southern Red Sea, Persian Gulf) as well as locations
with large daily thermal fluctuations (reef pools in Ofuy,
Samoa) also suggest that they have the potential to cope
with elevated ocean temperatures (Barshis et al. 2013;
Coles and Riegl 2013). The Intergovernmental Panel on
Climate Change (IPCC) intermediate RCP 6.0 scenarios
predicts that the global mean temperature will rise by av-
erage of 2.2 °C by AD 2100 (IPCC 2013). How did Acropora
corals survive under past warm ocean conditions and how
will they cope with climate changes occurring today?
Because of the ecological significance of Acropora, the
complete genome of Acropora digitifera was the first coral
genome sequenced (Shinzato et al. 2011), and additional coral
genomic data are becoming available (Prada et al. 2016;
Voolstra et al. 2017; Cunning et al. 2018; Ying et al. 2018,
2019; Helmkampf et al. 2019; Shumaker et al. 2019). In order
to identify genomic novelties that enabled Acropora to dis-
perse widely and thrive, and to adapt to warmer environ-
ments, we sequenced genomes of 15 Acropora species
(A. acuminata, A. awi, A. cytherea, A. digitifera, A. echinata,
A. florida, A. gemmifera, A. hyacinthus, A. intermedia,
A. microphthalma, A. muricata, A. nasta, A. selago, A. tenuis,
and A. yongei) (fig. 1). We further sequenced genomes of
confamilial taxa, Montipora cactus, M. efflorescens, and
Astreopora myriophthalma. Montipora is another speciose
genus (fig. 1) (Veron 2000), and Astreopora represents the
basal clade of the Acroporidae, based on molecular data
(Fukami et al. 2000). Together with available coral and antho-
zoan cnidarian genomic data, we examine genomic novelties
that could shed light on the evolutionary success of Acropora.

Understanding such genetic mechanisms may facilitate pre-
dictions about whether and how can they survive current
global warming.

Results and Discussion

Whole-Genome Assembly and Gene Predictions for
Acroporid Corals

For the 15 Acropora species, we obtained draft genome as-
semblies of 384—447 Mb with N50 sizes from 575 kb to 3 Mb
(table 1). These represent significant improvements over the
first version of the A. digitifera genome assembly (N50, 484 kb)
(Shinzato et al. 2011), and are of comparable or better quality
than other coral genomes reported in the NCBI Reference
Sequence (RefSeq) database, in terms of N50 sizes and num-
bers of scaffold sequences (table 1). In contrast to the
~30,000 gene models in previous Acropora genome assem-
blies, without performing error correction or removing hap-
lotype sequences (Mao et al. 2018), we predicted ~22,000
genes from each Acropora species (table 1).

Benchmarking Universal Single-Copy Orthologs (BUSCO)
analyses (Simao et al. 2015; Waterhouse et al. 2018), which
assess whether universal single-copy orthologous genes ob-
served in more than 90% of metazoan species from the
OrthoDB database of orthologs (www.orthodb.org, version
9) are recovered in a genome/transcriptome assembly,
yielded completeness scores of genome assemblies and
gene models of around 89% and 92% (average of Complete
BUSCO %), respectively, in all of these Acropora species (ta-
ble 1). The Montipora and Astreopora genome assemblies
were of comparable quality (table 1). BUSCO completeness
scores of both genome assemblies and gene models of the
acroporid genomes were also comparable to those of other
coral genomes available in NCBI RefSeq (table 1), indicating
that these draft genome assemblies and gene predictions are
of reasonable quality.

Genome Organization of Acroporid Genomes

Not surprisingly, proportions of various repetitive elements and
repeat landscapes were similar among the acroporid genomes
(supplementary fig. S1, Supplementary Material online). In
Acropora, about 40-45% of the genomes consist of interspersed
repeats (supplementary fig. S1, Supplementary Material online).
In Montipora, 50% of the genomes comprise repeats, possibly
reflecting larger assembled sizes than those of Acropora (supple-
mentary fig. S1, Supplementary Material online, table 1). The
most abundant repeat types were long interspersed nuclear el-
ement (LINE) and short interspersed nuclear element (SINE),
among the annotated elements, but the majority of the repeats,
comprising 28-30% of the genomes, seem to be novel and
possibly acroporid- or anthozoan-specific (supplementary fig.
S1, Supplementary Material online). In order to compare ge-
nome organization of Acropora and other anthozoan genomes,
A. digitifera scaffolds containing at least 100 orthologous groups
(OGs, see below) shared with other Acropora species, resulting in
38 scaffolds (125.7 Mb, 30% of the genome), were used to eval-
uate synteny. Genome alignments to individual scleractinian
genomes revealed high conservation of genome organization
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Fic. 1. Fifteen Acropora, two Montipora, and Astreopora species for which we sequenced complete genomes in this study. (A) Acropora acuminata,
(B) A. awi, (C) A. cytherea, (D) A. digitifera, (E) A. echinata, (F) A. florida, (G) A. gemmifera, (H) A. hyacinthus, (1) A. intermedia, (J) A. microphthalma,
(K) A. muricata, (L) A. nasta, (M) A. selago, (N) A. tenuis, (O) A. yongei, (P) Montipora cactus, (Q) M. efflorescens, (R) Astreopora myriophthalma.

within Acropora (supplementary fig. S2, Supplementary Material
online). Commensurate with phylogenetic distances to
Acropora, conservation of genome organization among acrop-
orids (Montipora and Astreopora), another scleractinian
(Orbicella), and a sea anemone (Nematostella) diminished pro-
gressively (supplementary fig. S2, Supplementary Material
online).

To determine whether large-scale (whole genome or chro-
mosomal level) genome duplication occurred in the anthozoan
lineage, we performed phylogenetic analyses of anthozoan genes
(24 proteomes) using 300 randomly selected protein sequences
from A. digitifera. We show 22 examples of phylogenetic analyses
that were based on an alignment of >150 AAs in more than 80
gene sequences or >>200 AAs in more than 40 gene sequences
from 24 anthozoan proteomes (supplementary fig. S3,
Supplementary Material online). Almost all nodes supported
by high bootstrap values (>80%) contained one sequence

from each anthozoan species (supplementary fig. S3,
Supplementary Material online). In addition, there was no clear
signature of large-scale duplications in genome alignment dot-
plots (supplementary fig. S2, Supplementary Material online).
Consequently, in contrast to a suggested whole-genome dupli-
cation event in the common ancestor of Acropora (Mao and
Satoh 2019), we detected no incontrovertible evidence of whole-
genome or large-scale duplication events in any anthozoan lin-
eage, including scleractinians, the Acroporidae, or the genus
Acropora, in this study. Thus, we did not take genome duplica-
tion events into account in subsequent analyses.

Common Characteristics of Gene Repertoires of
Scleractinians and Acroporids

In addition to the acroporid genomes, we used publicly avail-
able gene models of two anemones, Nematostella vectensis

3
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(Putnam et al. 2007) and Exaiptasia palida (Baumgarten et al.
2015), two corallimorpharians, Amplexidiscus fenestrafer and
Discosoma spp. (Wang et al. 2017), and two scleractinians,
Stylophora pistillata (Voolstra et al. 2017) and Orbicella faveo-
lata (Prada et al. 2016) for OG clustering, Examination of OGs
in anthozoan genomes allowed us to identify 21,697 OGs in
all taxa, 20,765 in scleractinians, 19,737 in acroporids, and
18,692 in Acropora. Approximately 98% of Acropora genes
and 93-97% of those of other acroporids (Montipora and
Astreopora) belonged to OGs identified in other scleractinian
species (fig. 2A, supplementary tables S1 and S2,
Supplementary Material online), indicating high conservation
of gene repertoires among scleractinians. Of the 21,697 OGs,
27 were exclusive to all scleractinians, but not observed in
other groups, 48 to the Acroporidae, and 90 to Acropora
(supplementary tables S3-S5, Supplementary Material on-
line). Among the 27 OGs exclusive to scleractinians, a known
coral calcification gene, skeletal aspartic acid-rich protein 2
(Ramos-Silva et al. 2013), was included (OG0002460, supple-
mentary table S3, Supplementary Material online), suggesting
that this gene might be essential for coral skeleton formation.
In addition, we also identified OGs that were not found in any
corals (supplementary tables S6-S8, Supplementary Material
online), suggesting that these OGs were either lost in the coral
clade, or that they arose after its divergence. In a previous
study, we reported that cystathionine 3-synthase, an essential
enzyme for cysteine biosynthesis, was possibly lost from the
A. digitifera genome (Shinzato et al. 2011). As Acropora spe-
cies are sensitive to bleaching (Loya et al. 2001), it is likely that
Acropora depends upon symbiotic dinoflagellates to produce
cysteine. In this study, we were unable to detect this gene in
any acroporid genome, but we did identify it in other coral,
corallimorpharian, and sea anemone genomes (OG0014971,
supplementary table S7, Supplementary Material online), sup-
porting the notion that this enzyme was lost in the common
ancestor of the Acroporidae and that differences in depen-
dency on symbiotic algae could partially explain the high
sensitivity of Acropora to bleaching.

Phylogenomic Analysis Revealed That the Common
Ancestor of Acropora Survived Warm Periods without
Sea Ice from the Mid or Late Cretaceous to the Early
Eocene

Phylogenomic analysis of these anthozoan genomes using 818
single-copy OGs yielded robust phylogenetic relationships,
with the major anthozoan cnidarian clades being supported
by 100% bootstrap values (fig. 2B). Almost all nodes among
the 15 Acropora species in four distinct clades were also
supported by 100% bootstrap values (fig. 2B), indicating
that these molecular phylogenetic relationships are well sup-
ported and are likely to reflect evolutionary relationships of
the 15 Acropora species. Acropora corals exhibit diverse mor-
phologies (arborescent, hispidose, corymbose, table, etc.)
(Wallace 1999), and each clade contains species with different
morphologies. For instance, hispidose branching corals, A. awi
and A. echinata belong to Clades Il and IV, respectively (figs. 1

and 2), indicating that the diverse colony forms of Acropora
are the result of convergent evolution in each clade.

Molecular dating analysis using 2,126 single-copy OGs indi-
cates that common ancestors of the Family Acroporidae
emerged 199-147 Ma, whereas those of the genus
Acropora appeared later, between 119 and 52 Ma (fig. 3). In
contrast to the suggested divergence timing of Acropora in a
previous study using five genomes (<15 Ma) without using
scleractinian fossil records for dating calibration (Mao et al.
2018), diversification of Acropora was thought to have oc-
curred during the Eocene and Oligocene (around 25-50 Ma),
possibly accounting for the high species diversity of Acropora
fossils known from the Miocene (5.3-23 Ma) and the exis-
tence of 12 extant species in the Early Miocene (fig. 3)
(Santodomingo et al. 2015). Although these molecular dating
estimates could shift as additional fossils are discovered, our
data suggest that the Acropora common ancestor originated
and survived in warm environments during the mid-late
Cretaceous and the Paleocene-Eocene Thermal Maximum
(55.8 Ma), when global temperatures rose 5-8°C in
20,000 years (Mclnerney and Wing 2011), until the Early
Eocene Climatic Optimum (EECO, 51-53 Ma) when they
reached a long-term maximum (Zachos et al. 2001, 2008).
Then a 17-Ma cooling trend occurred until the beginning
of the Oligocene (33.9 Ma), which may have facilitated diver-
sification of Acropora.

Gene Expansions Unique to Acropora Include Possible
Coral Stress Response Genes

We detected 48 and 90 OGs that are restricted to the
Acroporidae and Acropora, but not observed in the two other
scleractinians, two corallimorpharians, or two anemones, re-
spectively (supplementary tables S4 and S5, Supplementary
Material online). Of the 90 OGs observed exclusively in
Acropora, four genes are involved in coral calcification (gal-
axins, aspartic and glutamic acid-rich proteins, uncharacter-
ized skeletal organic matrix protein 6) (Ramos-Silva et al.
2013; Takeuchi et al. 2016), implying independent evolution-
ary mechanisms of calcification in Acropora, in addition to
shared mechanisms in scleractinians and possible involve-
ment of these genes in the great diversity of morphologies
and high levels of calcification rates in Acropora.

Gene duplication is a major driving force of genome evo-
lution and facilitates acquisition of novel gene functions
(Ohno 1970). In contrast to the lack of expanded or con-
tracted genes in the common ancestor of scleractinians
(fig. 3), 28 OGs were predicted to have expanded in the com-
mon ancestor of Acropora, which is the largest number of
expanded OGs in the entire scleractinian lineage (fig. 3, sup-
plementary table S9, Supplementary Material online). These
genes may contribute to adaptations to past warm environ-
ments, wide distributions, and ecological success of Acropora
corals. These include genes possibly restricted to corals or
cnidarians, small  cysteine-rich  peptides  (SCRiPs)
(OG0000795, only observed in Acropora and Montipora)
(Sunagawa et al. 2009) and a novel coral caspase type,
Caspase-X  (OG0000692,  supplementary  table  S3,

5
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Supplementary Material online) (Moya et al. 2016).
Phylogenetic analyses of SCRiPs and Caspase-X genes dem-
onstrated that expansions originated by tandem duplication
in Acropora genomes (supplementary fig. S4, Supplementary
Material online). Gene expression analysis showed that most
of these genes were more highly expressed in adults than in
embryos (supplementary fig. S4, Supplementary Material on-
line), suggesting that they function in adult corals.
Phylogenetic analysis showed that the tandemly duplicated
SCRiPs did not cluster together with reported SCRiPs in
UniProt, suggesting that these belong to a novel class (sup-
plementary fig. S4A, Supplementary Material online). Some
SCRIP genes were downregulated and are highly responsive to
thermal stress (Sunagawa et al. 2009) and are thought to be
potent neurotoxins (Jouiaei et al. 2015). It has been proposed
that suppression of a caspase-mediated apoptotic cascade in
host corals, induced by endogenous production of reactive
oxygen species from symbiotic algae, is important in thermal
stress responses (Kvitt et al. 2011; Tchernov et al. 2011).
Caspase-X genes possess both inactive and active caspase
domains, probably interacting and controlling caspase activity
(Moya et al. 2016), as in cooperative and hierarchical binding
of c-FLIP and caspase-8, in promoting or inhibiting apoptotic
cell death (Hughes et al. 2016), and may function in thermal
stress responses of Acropora. Although detailed functions of
Acropora-specific expanded SCRiPs and Caspase-X genes un-
der thermal stress remain to be revealed, these genes may

enable Acropora corals to cope with thermal stress and to
disperse widely and thrive globally.

Dimethlysulfonioproprionate Lyases, Which Promote
Cloud Formation and Which May Have Been Acquired
by Horizontal Gene Transfer from Algal Symbionts,
Are the Most Duplicated Genes in the Acropora
Ancestor

Among the 28 expanded OGs in the Acropora ancestor, the
most diversified (OG0000129) is similar to dimethlysulfonio-
proprionate (DMSP) lyase of a coccolithophore, Emiliania
huxleyi (Alcolombri et al. 2015) (figs. 3 and 4, supplementary
tables S9 and S$10, Supplementary Material online). This en-
zyme mediates cleavage of DMSP into dimethyl sulfide (DMS)
and acrylate. DMS is the principal form of sulfur that is re-
leased from oceans into the atmosphere; thus, it is a key
component of the ocean sulfur cycle (Quinn and Bates
2011). DMS may be crucial for cloud formation, and may
serve to reduce light levels and water temperatures in marine
environments (Vallina and Simo 2007). Thus, DMSP lyases in
marine organisms participate in atmosphere-ocean feedback
and may influence local climate regulation. Interestingly, con-
centrations of DMSP and DMS in corals are the highest
reported among marine organisms, suggesting that corals
are important sources of these two sulfur compounds
(Broadbent et al. 2002; Broadbent and Jones 2004).
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Our analysis shows that DMSP lyase gene expansions oc-
curred first in the common ancestor of Acropora and again
after divergence of the basal clade (supplementary tables S9
and S10, Supplementary Material online). Synteny analysis
revealed that the second expansion occurred by tandem du-
plication (fig. 4A). Relative expression levels of tandemly lo-
cated genes in A. digitifera showed higher expression levels in
gastrula and/or adult stages (fig. 4A), corresponding to higher
expression of a DMSP biosynthesis gene in larval stages of an
Acropora coral (Raina et al. 2013). Extant scleractinians com-
prise two major clades, “complex” and “robust,” based on
molecular analyses (Romano and Palumbi 1996; Kitahara
et al. 2010). Although DMSP lyase could not be detected in
genomes of “robust” corals, except for Goniastrea aspera, we
did detect it in genomes of “complex” corals, including
Astreopora and Montipora, and the two corallimorpharians
(Amplexidiscus and Discosoma) (fig. 4B and C). We detected a
single DMSP lyase locus in each scleractinian genome except
for acroporids. Interestingly, ORTHOSCOPE analysis, for
detecting orthologs, showed that among metazoans, DMSP
lyases occur only in the Scleractinia and Corallimorpharia
(fig. 4B). Molecular phylogeny showed that DMSP lyases
from  Emiliania, Symbiodiniaceae, Scleractinia, and
Corallimorpharia cluster together (fig. 4B). Moreover, genes
similar to Acropora DMSP lyase are only found in Acropora,
Emiliania, and the Symbiodiniaceae, among eukaryotes in the
NCBI NR database to date (BlastP, Te”>). These results sug-
gest that anthozoan DMSP lyases may have been acquired by
the common ancestor of scleractinians and corallimorphar-
ians via horizontal gene transfer from symbiotic
Symbiodiniaceae or Emiliania (fig. 4C) and were later possibly
lost in variety species of the “robust” clade (fig. 4C). Then,
expansions occurred in the common ancestor of Acropora. It
has been suggested that DMSP participates in a wide range of
coral stress responses, including those to heat, sunlight, air
exposure, and hyposalinity (Sunda et al. 2002; Raina et al.
2010; Deschaseaux et al. 2014; Aguilar et al. 2017). Higher
DMSP concentrations were observed in Acropora than in
other corals (Broadbent et al. 2002). These species-specific
phenomena may be supported by Acropora-specific gene
expansions. Although the functions of expanded DMSP lyases
in Acropora remain to be determined, Acropora-specific
expansions suggest that warmer and shallower environments
from the Cretaceous to the EECO may have enhanced gene
duplication in the Acropora ancestor. Diversified functions of
Acropora DMSP lyase may enable adaptation to stresses, such
as intense heat, light, and salinity, probably by forming clouds
to minimize ocean heating due to insolation.

Possible Antimicrobial Peptides and Symbiosis Genes
Are under Positive Selection in Acropora

In order to explore the genetic bases of Acropora diversifica-
tion, we compared gene repertoires of Acropora corals. We
identified 17 OGs for which amino acid sequences are iden-
tical among Acropora species (supplementary table S11,
Supplementary Material online), indicating that these serve
fundamental functions in Acropora. Conserved genes in-
cluded Homeobox, Forkhead, and Ras-related genes.
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In contrast, fast-evolving genes (Ka/Ks > 1) may be essen-
tial for Acropora adaptation to diverse or changing environ-
ments. Despite the highly conserved protein sequences of
Acropora single-copy genes (supplementary fig. S5,
Supplementary Material online), manifesting Ka/Ks ratios be-
low 1 (supplementary fig. S6, Supplementary Material online),
we identified 35 rapidly evolving candidate OGs (supplemen-
tary table S12, Supplementary Material online). Among 14
OGs in which Ka/Ks ratios >1 were detected in more than
three species combinations, seven OGs were exclusive to
scleractinians  (supplementary table S3, Supplementary
Material online) or Acropora (supplementary table S5,
Supplementary Material online). Interestingly, two candidate
genes possibly involved in coral-alga symbiosis, prosaposin
(OG0014095, Acropora restricted) and NHL domain-
containing gene (OG0010986, scleractinian restricted), were
included (supplementary table S12, Supplementary Material
online). These genes were exclusively upregulated when plan-
ula larvae of Acropora tenuis were infected with native algal
symbionts (Y. Yoshioka et al., under review) and Ka/Ks ratios
>1 were detected from all species combinations between
Clade | and Clade Il in prosaposin (supplementary table
S12, Supplementary Material online), suggesting possible di-
verse symbiotic mechanisms within the Acropora clade.
Seven fast-evolving OGs with no similarity to proteins in
the Swissprot/Pfam databases and shorter than 200 AA
were predicted to be antimicrobial peptides (probability
>0.95, iIAMPpred), facilitating Acropora responses to diverse
pathogens.

Conclusion

These comparative genomic analyses reveal genomic novel-
ties that could have allowed Acropora ancestors to survive
dynamic environmental changes during geological periods
much warmer than the present. Acropora-specific gene dupli-
cations in probable stress responsive genes (Caspase-X and
SCRiPs), and DMSP lyases may also enable Acropora to cope
with elevated ocean temperatures and to disperse and thrive
around the world. Although further investigation will be
needed, we identified candidate genes involved in Acropora
diversification. Genetic mechanisms that enabled Acropora
corals to survive past global warming periods may permit
them to cope with current global warming. However, the
speed of modern climate change may exceed their capacity
to adapt, particularly when also confronting local anthropo-
genic stressors, such as coastal pollution and overexploitation.
The present genomic resources, together with further molec-
ular studies, will provide a powerful resource to understand
how Acropora diversity originated and has been maintained.

Materials and Methods

Sampling and Genomic DNA Isolation from
Acroporid Corals

Specimens of 14 Acropora species (A. acuminata, A. awi,
A. cytherea, A. echinata, A. florida, A. gemmifera,
A. hyacinthus, A. intermedia, A. microphthalma, A. muricata,
A. nasta, A. selago, A. tenuis, and A. yongei) were collected in
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Sekisei Lagoon, Okinawa, Japan in May 2015, and were main-
tained in aquaria at the Research Center for Subtropical
Fisheries, Seikai National Fisheries Research Institute, until
spawning. As reported in Shinzato et al. (2011), each coral
colony was separated into different buckets in order to avoid
mixing gametes from different individuals, and buoyant egg-
sperm bundles were collected to isolate sperm, which were
used for isolation of high-quality genomic DNA for sequenc-
ing. DNA of A. digitifera was isolated from sperm from a
colony collected at Onna Village, Okinawa, in June 2015.
We collected eggs, blastulae, gastrulae, planula larvae, early
polyps, and adult branches from A. tenuis and A. digitifera for
RNA extraction. We also collected three acroporid corals
(Astreopora myriophthalma, M. cactus, and M. efflorescens)
in Sekisei Lagoon in June 2012 and May 2015. Gametes were
collected during spawning and genomic DNA was isolated
from sperm. Permits for coral collection were kindly provided
by the Okinawa Prefectural Government for research use
(Permits #23-47, 25-49, 25-67, 26-68, 27-73, and 27-12).

Genome Assembly and Repetitive Element Analysis

DNA from each species was isolated using the phenol-chlo-
roform method and was fragmented into ~600 bp lengths.
Two hundred nanograms of DNA was used for PCR-free
shotgun library preparation. For mate-pair libraries, different
sizes of DNA (~3, 7, 10, and 15 kb) were separated using
SageELF (Sage Science). Nextera Mate Pair Library Prep Kits
(llumina) were used for library preparation, following man-
ufacturer instructions. Each 250-bp paired-end library was
sequenced using a HiSeq 2500 in Rapid mode (lllumina).
lllumina adaptor sequences in raw sequencing data were re-
moved using Trimmomatic (Bolger et al. 2014), and cleaned
sequencing data were assembled using Platanus genome as-
sembler ver. 1.2.440 (Kajitani et al. 2014). For A. digitifera, we
used a PacBio for genome sequencing and data were assem-
bled with FALCON_unzip (Chin et al. 2016). Sequencing
errors in assembled sequences were corrected with Arrows
(SMRT Link ver. 4.0.0) using PacBio raw data. All raw genome
sequencing data are available under BioProject Accession
PRJDB8519. Assembled genomes were further improved by
merging possible haploid sequences with HaploMerger2
(Huang et al. 2017). Then, possible errors in all genome as-
semblies were corrected with Pilon version 1.22 (Walker et al.
2014) using lllumina shotgun and 3-kb mate-pair data. In the
end we identified scaffold sequences with high or low cover-
age or those that may have originated from one of the two
allelic copies of heterozygous regions, using Purge Haplotigs
(Roach et al. 2018), and excluded these from subsequent
analyses. We assessed completeness of genome assembly
with BUSCO ver. 3.0.2 (Simao et al. 2015; Waterhouse et al.
2018) and the Metazoan set (978 genes). Repetitive elements
in the draft genomes of Acroporidae (Acropora, Montipora,
and Astreopora) were identified de novo with RepeatScout
v.1.0.5 (Price et al. 2005) and annotated with BlastN and
BlastX searches against RepeatMasker.lib and RepeatPeps.lib
bundled with RepeatMasker v.4.0.6 (Smit et al. 1996-2010), as
reported in Luo et al. (2015, 2018). For nonannotated or pu-
tative novel repeats, one additional class “Novel” was
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introduced. The expansion history of repetitive elements
were calculated and visualized using perl scripts from
RepeatMasker package (calcDivergenceFromAlign.pl and
createRepeatLandscape.pl) as reported in Khalturin et al.
(2019).

Gene Prediction and Annotation

We isolated RNA from eggs, blastulae, gastrulae, planula lar-
vae, early polyps, and adult branches of A. tenuis and
A. digitifera using RNeasy Mini Kits (Qiagen) and performed
RNA-Seq using a HiSeq 2000 platform (lllumina). For gene
prediction of Acropora genome assemblies, Augustus version
3.2.3 (Stanke et al. 2006) was first trained using 2,000 high-
quality A. digitifera-assembled transcriptome sequences
(Shinzato et al. 2011) selected by PASA (Haas et al. 2003).
Then, the trained Augustus was used for gene prediction
from repeat-masked genome assemblies produced by
RepeatMasker (Smit et al. 1996-2010) together with the
A. tenuis and A. digitifera RNA-Seq data as gene structure
hints. For Montipora and Astreopora, we used predicted pro-
tein sequences from A. digitifera and A. tenuis as hints. In
order to remove gene models that sometimes originate
from different haplotypes, each proteome was clustered using
CDHIT (98% sequence identity) (Li and Godzik 2006), and
proteins shorter than 30 amino acids were excluded from
subsequent analyses. We also assessed completeness of rep-
ertoires of predicted genes (MRNA) using BUSCO with the
“transcriptome” setting. All proteomes were BLASTed against
the Uniprot/Swissprot (UniProt Consortium 2018) database
and were analyzed with InterProScan 5 (Jones et al. 2014).
Genome browsers for the 18 acroporid genomes are available
from the Marine Genomics Unit web site (https://marine-
genomics.oistjp/gallery).

Clustering of Orthologous Anthozoan Genes

In addition to the acroporid genomes, we used publicly avail-
able gene models of two anemones, N. vectensis (Putnam
et al. 2007) and E. palida (Baumgarten et al. 2015), two cor-
allimorpharians, Amplexidiscus fenestrafer and Discosoma spp.
(Wang et al. 2017), and two scleractinians, S. pistillata
(Voolstra et al. 2017) and O. faveolata (Prada et al. 2016).
For the S. pistillata, O. faveolata, and E. palida genomes, we
downloaded data from the NCBI RefSeq database. For
Acropora, Montipora, and Astreopora gene models, we se-
lected the longest transcript variant from each gene and
used it for subsequent analyses. Then, using OrthoFinder ver-
sion 2.1.2 (Emms and Kelly 2015), we performed clustering of
OGs, the genes descended from a single gene in the last
common ancestor of a group of species. CAFE
(Computational Analysis of gene Family Evolution, version
4.1) (Han et al. 2013) was used to analyze changes in OG
family size in order to account for phylogenetic history. In
addition, we prepared a special updated version of
ORTHOSCORPE (Inoue and Satoh 2019) for gene tree and
orthogroup estimation in publicly available metazoan
genomes by incorporating acroporid genomic data (https://
www.orthoscope,jp), from which nucleotide and translated
amino acid sequences of acroporid gene models used in this
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study are available. For DMSP lyase analysis, we used
Montiopra, Astreopora, Discosoma, and Emilania DMSP genes
for BlastP (1e ¥ homologous gene search of eukaryote
genomes in ORTHOSCOPE, and numbers of expanded genes
in each node were predicted using NOTUNG (Chen et al.
2000). We also searched DMSP lyase (TBLASTN, 1e ) in
genomes of Fungia spp., Goniastrea aspera, Pocillopora dam-
icornis, Porites lutea, Galaxea fascicularis, and Pachyseris spe-
ciosa deposited in Reefgenomics website (http://
reefgenomics.org/) (Voolstra et al. 2015; Liew et al. 2016).
For molecular phylogenetic analysis of DMSP lyase, we re-
trieved possible DMSP lyase sequences from available
G. aspera and G. fascicularis gene models. Although no prob-
able DMSP lyase locus was identified in the P. lutea genome
and gene models in Reefgenomics, we included a probable
DMSP lyase (accession number: FX437344.1) identified from
the Porites australiensis transcriptome assembly (Shinzato
et al. 2014) for the molecular phylogenetic analysis. For
Acropora sequences, we used single species from each of
the four clades as follows; I: A. tenuis, II; A. intermedia, IlI:
A. digitifera, IV: A. selago.

Comparison of Anthozoan Genome Organization and
Assessment of Genome Duplication

In order to select highly conserved Acropora genome sequen-
ces, we selected scaffolds from the A. digitifera genome as-
sembly that share more than 100 OGs in at least one scaffold
of the other 14 Acropora genomes, resulting in 38 scaffolds
(total 125.7 Mb, 30% of the total assembly size). Conserved 38
A. digitifera scaffold sequences were aligned against each
acroporid (A. tenuis, A. intermedia, A. microphthalma,
A. selago, Montipora cactus, and Astreopora myriophthalma),
scleractinian (S. pistillata), and sea anemone (E. palida) ge-
nome using LAST (version 956) (Kielbasa et al. 2011). For each
genome alignment, we selected genome sequences showing
the three highest alignment scores for each query sequence,
and alignments with error probabilities >10"> were dis-
carded. Dot plots of the alignments sorted by alignment order
and orientation of the query were drawn using last-dotplot
(Kielbasa et al. 2011). To analyze whether genome- or
chromosome-level genome duplication events occurred in
anthozoans, we used 300 randomly selected protein sequen-
ces of A. digitifera as queries in subsequent BLAST searches.
Each selected A. digitifera protein was searched against each
anthozoan proteome using BlastP with an e-value cutoff of
e . Then the top five hits were retrieved. Retrieved protein
sequences were aligned using MAFFT (ver. 7.310. with —auto
option) (Katoh and Standley 2013), and gaps in the aligned
sequences were trimmed using TrimAL (Capella-Gutierrez
et al. 2009) with the —gappyout option. After that, poorly
aligned sequences were removed (-resoverlap 0.75 -seqover-
lap 80). Finally all gaps in alignments were removed using the
—nogaps option. In order to restrict protein sequences to
those with high-quality alignments and to increase the num-
ber of genes for subsequent phylogenetic analyses, we se-
lected alignments containing >200 AAs and more than 40
sequences or >150 AA with more than 80 sequences. Then,
we performed molecular phylogenetic analysis of the selected

alignments using RAXML (maximum likelihood method) with
100 bootstrap replicates (Stamatakis 2014).

Molecular Phylogeny and Divergence Time Estimation
For molecular phylogenetic analysis of anthozoans, we used
818 OGs that were assigned by OrthoFinder as single-copy
genes in all of the above anthozoan genomes. All amino acid
sequences belonging to same OG were aligned with MAFFT
(Katoh and Standley 2013) and all gaps in the alignment were
removed with TrimAL (Capella-Gutierrez et al. 2009). Then all
sequences from the same species were concatenated, and
finally, a maximum likelihood analysis was performed using
concatenated sequences (176,160 amino acids in length)
from RAXML with 100 bootstraps. To estimate acroporid di-
vergence times, we performed molecular phylogenetic anal-
ysis using 2,126 single-copy OGs among S. pistillata and
acroporid corals, and concatenated sequences (621,659
amino acids in length) were analyzed using PhyloBayes
v.1.6j (Lartillot et al. 2013) with the -cat -gtr model. We
used the oldest fossil records of Astreopora, Montipora,
Acropora, and the Suborder Astrocoeniina, the parent taxon
of the Acroporidae and Pocilloporidae, found in the
Fossilworks database (Behrensmeyer and Turner 2013). For
the Stylopora (Pocilloporidae) and Astreopora (Acroporidae)
divergence calibration, we applied the oldest fossil record
(225.1 Ma) of suborder Astrocoeniina, parent taxon of both
the Acroporidae and Pocilloporidae as the upper limit and
considered the oldest fossil record of the Acroporidae (164.7
Ma) as the lower limit. For the Astreopora and Montipora
divergence calibration, we applied the oldest fossil record of
the Acroporidae for the upper limit and used the oldest fossil
record of Astreopora (136.4 Ma) for the lower limit. To cali-
brate the divergence of Acropora and Montipora, we applied
the oldest fossil record of Astreopora for the upper limit,
because Astreopora is a more basal clade than Acropora
and Montipora, and applied the oldest fossil record of
Montipora (70.6 Ma) for the lower limit. For calibrations be-
tween Acropora species, we employed the oldest fossil record
of Acropora (55.8 Ma) as the upper limit and applied the
oldest fossil record of each species as the lower limit. Fossil
calibrations used are shown in supplementary table S13,
Supplementary Material online.

Identification of Highly Conserved and Fast-Evolving

Acropora Genes

In order to avoid comparisons of paralogs, we restricted the
following calculations to OGs assigned in this study as single-
copy genes in Acropora species (4,548 OGs). In addition, to
avoid comparing different transcript variants between spe-
cies, nucleotide and translated amino acid sequences of the
longest transcript variant from each species were retrieved for
each single-copy OG. Translated amino acid sequences of
each group were aligned with MAFFT (with —auto option).
Then, aligned nucleotide codon sequences without alignment
gaps were retrieved using the PAL2NAL script (Suyama et al.
2006). In order to analyze single-copy OGs with reliable align-
ment among Acropora, we selected OGs as follows:
1) Alignment nucleotide sequence lengths had to be longer
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than 90 bp, 2) species for which aligned nucleotide residues
were shorter than 90% of alignment were removed using
TrimAL “-seqoverlap 90” option, and 3) alignment had to
include at least 14 of the 15 species. Average percent identities
of aligned nucleotides were calculated using TrimAL. In order
to identify possible fast-evolving genes, we calculated non-
synonymous (Ka) and synonymous (Ks) substitution rates of
Acropora single-copy OGs by pairwise species comparisons of
the 15 Acropora species (105 species combinations in total)
using KaKs_Calculator 2.0 (Wang et al. 2010), which incorpo-
rates 17 methods for calculation of Ka and Ks substitution
rates with the —MA option. To exclude paralogous gene
comparisons, we ignored OGs showing synonymous substi-
tution rates >0.1 (Bustamante et al. 2005), and poorly aligned
genes (PAL2NAL codon alignment length was shorter than
95% of the average length of the two sequences) were re-
moved from the calculation. Finally, OGs showing Ka/Ks >1
with P < 0.05 (Fisher’s exact test, KaKs_Calculator 2.0) were
identified for each pairwise combination. For genes without
homology to any sequence in the Uniprot/Swissprot data-
base, we predicted transmembrane helices in translated
amino acid sequences using the TMHMM Server v. 2.0
(Krogh et al. 2001) and antimicrobial peptides using
iAMPpred (Meher et al. 2017).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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